Last updated: 2020-11-24

Checks: 7 0

Knit directory: interaction-tools/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191213) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0333fe3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .drake/
    Ignored:    data/COMUNET/
    Ignored:    data/CellChat/
    Ignored:    data/ICELLNET/
    Ignored:    data/NicheNet/
    Ignored:    data/cellphonedb/
    Ignored:    data/celltalker/
    Ignored:    output/14-CellChat.Rmd/
    Ignored:    output/15-talklr.Rmd/
    Ignored:    output/16-CiteFuse.Rmd/
    Ignored:    output/17-scTHI.Rmd/
    Ignored:    output/18-celltalker.Rmd/
    Ignored:    output/index.Rmd/
    Ignored:    renv/library/
    Ignored:    renv/python/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   _drake.R
    Modified:   output/11-CellPhoneDB.Rmd/count_network.txt
    Modified:   output/11-CellPhoneDB.Rmd/dotplot.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_counts.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_logcounts.png
    Modified:   output/11-CellPhoneDB.Rmd/interactions_count.txt
    Modified:   output/11-CellPhoneDB.Rmd/pvalues.txt
    Modified:   output/11-CellPhoneDB.Rmd/significant_means.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/13-COMUNET.Rmd) and HTML (docs/13-COMUNET.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 259369a Luke Zappia 2020-06-04 Rebuild
Rmd fbed032 Luke Zappia 2020-06-04 Complete COMUNET example
Rmd cdb3b4d Luke Zappia 2020-06-03 Set up COMUNET document

# Setup document
source(here::here("code", "setup.R"))

# Function dependencies
invisible(drake::readd(download_link))

Introduction

In this document we are going to run through the example analysis for the COMUNET package and have a look at the output it produces. More information about COMUNET can be found at https://github.com/ScialdoneLab/COMUNET.

library("COMUNET")

Chunk time: 2.07 secs

1 Input

The COMUNET package performs downstream analysis based on the results of any algorithm which produces a matrix of weights representing the strength of interactions between two cell type from a ligand-receptor pair.

For their tutorials the authors have used the output produced by CellPhoneDB.

1.1 CellPhoneDB database

We require two of the files which make up the CellPhoneDB database.

1.1.1 complex_input.csv

This file contains information about the complexes in the CellPhoneDB database.

complex_input <- read_csv(
    fs::path(
        PATHS$cellphonedb_in,
        "database_v2.0.0",
        "data",
        "complex_input.csv"
    ),
    col_types = cols(
        complex_name       = col_character(),
        uniprot_1          = col_character(),
        uniprot_2          = col_character(),
        uniprot_3          = col_character(),
        uniprot_4          = col_logical(),
        transmembrane      = col_logical(),
        peripheral         = col_logical(),
        secreted           = col_logical(),
        secreted_desc      = col_character(),
        secreted_highlight = col_logical(),
        receptor           = col_logical(),
        receptor_desc      = col_character(),
        integrin           = col_logical(),
        other              = col_logical(),
        other_desc         = col_character(),
        pdb_id             = col_character(),
        pdb_structure      = col_character(),
        stoichiometry      = col_character(),
        comments_complex   = col_character()
    )
) %>%
    mutate(complex_name = gsub("_" , " " , complex_name))

skim(complex_input)
Data summary
Name complex_input
Number of rows 112
Number of columns 19
_______________________
Column type frequency:
character 11
logical 8
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
complex_name 0 1.00 4 24 0 112 0
uniprot_1 0 1.00 6 6 0 64 0
uniprot_2 0 1.00 6 6 0 74 0
uniprot_3 106 0.05 6 6 0 6 0
secreted_desc 106 0.05 4 44 0 5 0
receptor_desc 63 0.44 18 45 0 16 0
other_desc 110 0.02 9 51 0 2 0
pdb_id 90 0.20 4 4 0 22 0
pdb_structure 0 1.00 4 7 0 3 0
stoichiometry 91 0.19 9 30 0 21 0
comments_complex 36 0.68 14 176 0 42 0

Variable type: logical

skim_variable n_missing complete_rate mean count
uniprot_4 112 0 NaN :
transmembrane 0 1 0.94 TRU: 105, FAL: 7
peripheral 0 1 0.01 FAL: 111, TRU: 1
secreted 0 1 0.05 FAL: 106, TRU: 6
secreted_highlight 0 1 0.05 FAL: 106, TRU: 6
receptor 0 1 0.73 TRU: 82, FAL: 30
integrin 0 1 0.21 FAL: 89, TRU: 23
other 0 1 0.02 FAL: 110, TRU: 2

Chunk time: 0.19 secs

1.1.2 gene_input.csv

This file contains information about the genes in the CellPhoneDB database.

gene_input <- read_csv(
    fs::path(
        PATHS$cellphonedb_in,
        "database_v2.0.0",
        "data",
        "gene_input.csv"
    ),
    col_types = cols(
        gene_name   = col_character(),
        uniprot     = col_character(),
        hgnc_symbol = col_character(),
        ensembl     = col_character()
    )
)

skim(gene_input)
Data summary
Name gene_input
Number of rows 1252
Number of columns 4
_______________________
Column type frequency:
character 4
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
gene_name 0 1 2 9 0 979 0
uniprot 0 1 4 7 0 978 0
hgnc_symbol 1 1 2 9 0 979 0
ensembl 0 1 15 15 0 1251 0

Chunk time: 0.06 secs

1.2 CellPhoneDB output

Output files from running CellPhoneDB

1.2.1 significant_means.txt

Information about each ligand-receptor pair as well as scores for each pair of cell types calculated by CellPhoneDB.

means <- read_tsv(
    fs::path(PATHS$COMUNET_in, "mouse", "significant_means.txt"),
    col_types = cols(
        .default = col_double(),
        id_cp_interaction   = col_character(),
        interacting_pair    = col_character(),
        partner_a           = col_character(),
        partner_b           = col_character(),
        gene_a              = col_character(),
        gene_b              = col_character(),
        secreted            = col_logical(),
        receptor_a          = col_logical(),
        receptor_b          = col_logical(),
        annotation_strategy = col_character(),
        is_integrin         = col_logical()
    )
)

skim(means)
Data summary
Name means
Number of rows 403
Number of columns 37
_______________________
Column type frequency:
character 7
logical 4
numeric 26
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
id_cp_interaction 0 1.00 15 15 0 403 0
interacting_pair 0 1.00 8 24 0 402 0
partner_a 0 1.00 12 26 0 196 0
partner_b 0 1.00 13 25 0 195 0
gene_a 36 0.91 2 8 0 181 0
gene_b 60 0.85 3 9 0 178 0
annotation_strategy 0 1.00 3 33 0 19 0

Variable type: logical

skim_variable n_missing complete_rate mean count
secreted 0 1 0.80 TRU: 323, FAL: 80
receptor_a 0 1 0.43 FAL: 231, TRU: 172
receptor_b 0 1 0.51 TRU: 204, FAL: 199
is_integrin 0 1 0.13 FAL: 350, TRU: 53

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
rank 0 1.00 1.04 0.69 0.04 0.20 1.60 1.60 1.60 ▅▁▁▁▇
EPI|EPI 385 0.04 1.43 2.13 0.26 0.36 0.54 1.53 7.12 ▇▂▁▁▁
EPI|Mes 367 0.09 0.84 1.15 0.22 0.31 0.60 0.89 7.23 ▇▁▁▁▁
EPI|TE 382 0.05 1.20 1.44 0.27 0.56 0.92 1.33 7.09 ▇▁▁▁▁
EPI|emVE 368 0.09 1.12 1.58 0.19 0.49 0.65 0.99 7.26 ▇▁▁▁▁
EPI|exVE 377 0.06 1.28 1.77 0.17 0.44 0.76 1.20 7.10 ▇▁▁▁▁
Mes|EPI 363 0.10 1.36 1.82 0.22 0.42 0.52 0.95 6.93 ▇▁▁▁▁
Mes|Mes 330 0.18 0.89 1.29 0.15 0.37 0.50 0.74 7.03 ▇▁▁▁▁
Mes|TE 369 0.08 1.37 1.66 0.21 0.45 0.73 1.28 6.89 ▇▁▁▁▁
Mes|emVE 353 0.12 1.05 1.50 0.20 0.44 0.62 0.82 7.07 ▇▁▁▁▁
Mes|exVE 359 0.11 1.09 1.58 0.22 0.40 0.63 0.85 6.91 ▇▁▁▁▁
TE|EPI 380 0.06 0.75 0.52 0.26 0.38 0.55 0.98 2.01 ▇▂▁▁▁
TE|Mes 362 0.10 0.70 0.40 0.20 0.32 0.63 0.90 1.84 ▇▃▃▁▁
TE|TE 381 0.05 0.70 0.34 0.19 0.50 0.65 0.96 1.36 ▆▇▂▇▂
TE|emVE 366 0.09 0.75 0.42 0.20 0.49 0.63 0.91 2.00 ▇▇▂▁▁
TE|exVE 378 0.06 0.70 0.36 0.18 0.42 0.62 0.98 1.36 ▇▇▃▆▅
emVE|EPI 374 0.07 2.90 9.14 0.18 0.39 0.85 1.28 49.69 ▇▁▁▁▁
emVE|Mes 353 0.12 0.79 1.17 0.16 0.33 0.50 0.73 6.93 ▇▁▁▁▁
emVE|TE 380 0.06 3.22 10.20 0.16 0.62 0.77 1.04 49.62 ▇▁▁▁▁
emVE|emVE 361 0.10 2.19 7.62 0.17 0.51 0.72 1.00 49.64 ▇▁▁▁▁
emVE|exVE 375 0.07 3.00 9.29 0.22 0.48 0.89 1.36 49.68 ▇▁▁▁▁
exVE|EPI 373 0.07 2.66 9.02 0.26 0.40 0.64 1.26 50.14 ▇▁▁▁▁
exVE|Mes 360 0.11 0.83 0.84 0.23 0.34 0.55 0.94 5.01 ▇▁▁▁▁
exVE|TE 385 0.04 3.95 11.57 0.25 0.58 0.84 1.89 50.08 ▇▁▁▁▁
exVE|emVE 368 0.09 2.31 8.36 0.16 0.52 0.66 1.06 50.09 ▇▁▁▁▁
exVE|exVE 383 0.05 3.56 11.03 0.20 0.42 0.69 1.30 50.13 ▇▁▁▁▁

Chunk time: 0.27 secs

2 Convert CellPhoneDB output

The first step is to convert the output from CellPhoneDB into the format used by COMUNET. Instead of the single matrix provided by CellPhoneDB, COMUNET needs a matrix for each ligand-receptor pair where the rows are sending cell types and the columns are receiving cell types.

prepped_means <- means %>%
    as.data.frame() %>%
    distinct(interacting_pair, .keep_all = TRUE)
rownames(prepped_means) <- prepped_means$interacting_pair

interactions <- convert_CellPhoneDB_output(
    CellPhoneDB_output = prepped_means,
    complex_input      = complex_input,
    gene_input         = gene_input
)

Chunk time: 1.44 secs

The result of the conversion function is a list with 3 items.

2.1 Weight array

The first item is a three-dimensional array with the weights calculated by CellPhoneDB. There are 162 of these matrices, here is an example of the first one.

pander(interactions$weight_array[, , 1])
  EPI Mes TE emVE exVE
EPI 0 0 0 0 0
Mes 0 0 0 0.438 0
TE 0 0 0 0 0
emVE 0 0 0 0 0
exVE 0 0 0 0 0

Chunk time: 0.01 secs

2.2 Ligand-receptor pairs

The second item contains information about ligand-receptor pairs.

skim(interactions$ligand_receptor_pair_df)
Data summary
Name interactions$ligand_recep…
Number of rows 162
Number of columns 5
_______________________
Column type frequency:
character 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
pair 0 1 8 24 0 162 0
ligand 0 1 3 7 0 71 0
ligand_complex_composition 0 1 3 7 0 71 0
receptor 0 1 3 18 0 88 0
receptor_complex_composition 0 1 3 19 0 88 0

Chunk time: 0.05 secs

2.3 Nodes

The final item is a vector of the names of all the cell types: EPI, Mes, TE, emVE, exVE

3 Clustering interaction partners

The aim of this analysis is to find ligand-receptor pairs that interact in similar ways. This is done by clustering the communication graphs of the ligand-receptor pairs.

lrp_clusters <- lrp_clustering(
    weight_array            = interactions$weight_array,
    ligand_receptor_pair_df = interactions$ligand_receptor_pair_df,
    nodes                   = interactions$nodes
)

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04
 ..cutHeight not given, setting it to 0.986  ===>  99% of the (truncated) height range in dendro.
 ..done.
[1] "Warning: some graphs are not assigned to any cluster"
[1] "We have 8 clusters"

Chunk time: 2.49 secs

3.1 Output

This step produces a list with 3 items.

3.1.1 Dissimilarity matrix

Matrix with distances between each ligand-receptor pair. Here is a small example.

pander(lrp_clusters$dissim_matrix[1:5, 1:5])
  WNT5A:FZD6 NRG1:NETO2 EFNB1:EPHB2 EPHB2:EFNB3 WNT2:FZD4
WNT5A:FZD6 0 1 1 1 1
NRG1:NETO2 1 0 1 1 1
EFNB1:EPHB2 1 1 0 1 1
EPHB2:EFNB3 1 1 1 0 1
WNT2:FZD4 1 1 1 1 0

Chunk time: 0.01 secs

3.1.2 Clusters

Cluster assignments for each ligand-receptor pair.

kable(head(lrp_clusters$clusters))
x
WNT5A:FZD6 4
NRG1:NETO2 2
EFNB1:EPHB2 2
EPHB2:EFNB3 1
WNT2:FZD4 4
VEGFA:EPHB2 2

Chunk time: 0 secs

3.1.3 Cluster weight array

The average interaction weights between cell types by cluster. There are 8 of these matrices, here is an example of the first one.

pander(lrp_clusters$weight_array_by_cluster[, , 1])
  EPI Mes TE emVE exVE
EPI 0.09733 0.1426 0.09956 0.2001 0.1412
Mes 0.2163 0.2975 0.1857 0.2907 0.2219
TE 0.3269 0.4548 0.3043 0.512 0.4484
emVE 0.04547 0.06903 0.04306 0.1099 0.03228
exVE 0.02636 0.04067 0.04483 0.06939 0

Chunk time: 0.01 secs

3.2 Visualisation

We can visualise the results in different ways.

3.2.1 Heatmap

We can plot a heatmap of the clustered ligand-receptor pairs.

plot_cluster_heatmap(
    dissim_matrix = lrp_clusters$dissim_matrix,
    lrp_clusters  = lrp_clusters$clusters
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.98 secs

3.2.2 UMAP

We can also make a UMAP plot showing the pairs in a reduced dimensional space.

plot_cluster_UMAP(
    ligand_receptor_pair_df = interactions$ligand_receptor_pair_df,
    dissim_matrix           = lrp_clusters$dissim_matrix,
    lrp_clusters            = lrp_clusters$clusters
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.84 secs

3.2.3 Communication pattern

The average communication between cell types for each cluster can be shown as a graph. Here are examples for the first three clusters.

for(cluster_idx in c(1:3)){
    cluster <- paste("cluster", cluster_idx)
    plot_communication_graph(
        LRP = cluster,
        weight_array            = lrp_clusters$weight_array_by_cluster[, , cluster],
        ligand_receptor_pair_df = interactions$ligand_receptor_pair_df,
        nodes                   = interactions$nodes,
        is_cluster              = TRUE
    )
}

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.4 secs

3.2.4 Pairs

We can also look at the specific ligand-receptor pairs in a cluster.

for(cluster_idx in c(1:3)) {
    plot_lig_rec(
        cluster_of_interest     = cluster_idx,
        lrp_clusters            = lrp_clusters$clusters,
        ligand_receptor_pair_df = interactions$ligand_receptor_pair_df,
        node_label_cex          = 0.5
    )
}

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.62 secs

5 Comparative analysis

We can also use COMUNET to compare the interaction network between two conditions. For this analysis we use a second dataset that includes AML samples before and after treatment.

cond1 <- "AML328_d0"
cond2 <- "AML328_d29"

cond1_means <- read_tsv(
    fs::path(PATHS$COMUNET_in, "AML", "means_d0.txt"),
    col_types = cols(
        .default = col_double(),
        id_cp_interaction   = col_character(),
        interacting_pair    = col_character(),
        partner_a           = col_character(),
        partner_b           = col_character(),
        gene_a              = col_character(),
        gene_b              = col_character(),
        secreted            = col_logical(),
        receptor_a          = col_logical(),
        receptor_b          = col_logical(),
        annotation_strategy = col_character(),
        is_integrin         = col_logical()
    )
)

cond2_means <- read_tsv(
    fs::path(PATHS$COMUNET_in, "AML", "means_d29.txt"),
    col_types = cols(
        .default = col_double(),
        id_cp_interaction   = col_character(),
        interacting_pair    = col_character(),
        partner_a           = col_character(),
        partner_b           = col_character(),
        gene_a              = col_character(),
        gene_b              = col_character(),
        secreted            = col_logical(),
        receptor_a          = col_logical(),
        receptor_b          = col_logical(),
        annotation_strategy = col_character(),
        is_integrin         = col_logical()
    )
)

cond1_prepped_means <- cond1_means %>%
    as.data.frame() %>%
    distinct(interacting_pair, .keep_all = TRUE)
rownames(cond1_prepped_means) <- cond1_prepped_means$interacting_pair

cond2_prepped_means <- cond2_means %>%
    as.data.frame() %>%
    distinct(interacting_pair, .keep_all = TRUE)
rownames(cond2_prepped_means) <- cond2_prepped_means$interacting_pair

cond1_interactions <- convert_CellPhoneDB_output(
    CellPhoneDB_output = cond1_prepped_means,
    complex_input      = complex_input,
    gene_input         = gene_input
)

cond2_interactions <- convert_CellPhoneDB_output(
    CellPhoneDB_output = cond2_prepped_means,
    complex_input      = complex_input,
    gene_input         = gene_input
)

Chunk time: 27.1 secs

First we check the overlap in ligand-receptor pairs in the two conditions.

cond1_pairs <- cond1_interactions$ligand_receptor_pair_df$pair
cond2_pairs <- cond2_interactions$ligand_receptor_pair_df$pair

inter <- intersect(cond1_pairs, cond2_pairs)
cond1_only <- setdiff(cond1_pairs, cond2_pairs)
cond2_only <- setdiff(cond2_pairs, cond1_pairs)

Chunk time: 0.01 secs

There are 305 pairs present in both conditions, 14, present only in the first condition and 10 present in only the second condition.

Just because the pairs are present doesn’t mean they are interacting in the same way. To find that out we need to run the analysis.

result <- comparative_analysis(
    cond1_weight_array            = cond1_interactions$weight_array,
    cond2_weight_array            = cond2_interactions$weight_array,
    cond1_ligand_receptor_pair_df = cond1_interactions$ligand_receptor_pair_df,
    cond2_ligand_receptor_pair_df = cond2_interactions$ligand_receptor_pair_df,
    cond1_nodes                   = cond1_interactions$nodes,
    cond2_nodes                   = cond2_interactions$nodes,
    cond1_name                    = cond1,
    cond2_name                    = cond2
)

Chunk time: 1.21 mins

5.1 Output

The output of the comparison function is a list with 2 items.

5.1.1 Pairs

The first item describes the ligand-receptor pairs, which conditions that are present in and the dissimilarity between the conditions.

skim(result$sorted_LRP_df)
Data summary
Name result$sorted_LRP_df
Number of rows 329
Number of columns 3
_______________________
Column type frequency:
character 1
factor 1
numeric 1
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
pair 0 1 7 24 0 329 0

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
presence 0 1 TRUE 3 sha: 305, onl: 14, onl: 10

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
dissimilarity 0 1 0.79 0.17 0.13 0.68 0.83 0.91 1 ▁▁▂▅▇

Chunk time: 0.06 secs

5.1.2 Dissimilarity

The second output is a dissimilarity matrix where the rows are ligand-receptor pairs in condition 1 and and the columns are ligand-receptor pairs in condition 2.

pander(result$dissim_cond1_cond2[1:5, 1:5])
Table continues below
  TNFSF9:HLA-DPA1 TNFSF9:PVR PVR:CD96 PVR:CD226
TNFSF9:HLA-DPA1 0.8851 0.972 0.9291 0.9455
TNFSF9:PVR 0.9782 0.9227 0.9766 0.9211
PVR:CD96 0.9358 0.9459 0.7778 0.9017
PVR:CD226 0.9213 0.9399 0.8773 0.8039
TIGIT:PVR 0.946 0.9062 0.9241 0.8799
  TIGIT:PVR
TNFSF9:HLA-DPA1 0.9789
TNFSF9:PVR 0.9486
PVR:CD96 0.8841
PVR:CD226 0.8951
TIGIT:PVR 0.8166

Chunk time: 0.02 secs

5.2 Visualisation

5.2.1 Heatmap

We can plot a heatmap of the dissimilarity between conditions.

plot_dissimilarity_heatmaps(
    dissim_cond1_cond2 = result$dissim_cond1_cond2,
    sorted_LRP_df      = result$sorted_LRP_df,
    cond1_name         = cond1,
    cond2_name         = cond2
)

Version Author Date
259369a Luke Zappia 2020-06-04

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 7.98 secs

5.2.2 Graphs

Graphs can be used to show the communication networks for a ligand-receptor pair. Let’s compare the graphs between conditions for a set of example pairs.

5.2.2.1 Most similar

most_similar <- result$sorted_LRP_df %>%
    filter(
        presence      == "shared",
        dissimilarity == min(dissimilarity)
    )

Chunk time: 0 secs

The most similar pair is HLA-C:KIR2DL3 with a dissimilarity of 0.1293086.

plot_communication_graph(
    LRP                     = most_similar$pair,
    weight_array            = cond1_interactions$weight_array,
    ligand_receptor_pair_df = cond1_interactions$ligand_receptor_pair_df,
    nodes                   = cond1_interactions$node,
    title                   = most_similar$pair,
    subtitle                = cond1
)

Version Author Date
259369a Luke Zappia 2020-06-04
plot_communication_graph(
    LRP                     = most_similar$pair,
    weight_array            = cond2_interactions$weight_array,
    ligand_receptor_pair_df = cond2_interactions$ligand_receptor_pair_df,
    nodes                   = cond2_interactions$node,
    title                   = most_similar$pair,
    subtitle                = cond2
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.32 secs

5.2.2.2 Least similar

least_similar <- result$sorted_LRP_df %>%
    filter(
        presence      == "shared",
        dissimilarity == max(dissimilarity)
    ) %>%
    top_n(1, pair)

Chunk time: 0 secs

The least similar pair is WNT3:FZD1 with a dissimilarity of 1.

plot_communication_graph(
    LRP                     = least_similar$pair,
    weight_array            = cond1_interactions$weight_array,
    ligand_receptor_pair_df = cond1_interactions$ligand_receptor_pair_df,
    nodes                   = cond1_interactions$node,
    title                   = least_similar$pair,
    subtitle                = cond1
)

Version Author Date
259369a Luke Zappia 2020-06-04
plot_communication_graph(
    LRP                     = least_similar$pair,
    weight_array            = cond2_interactions$weight_array,
    ligand_receptor_pair_df = cond2_interactions$ligand_receptor_pair_df,
    nodes                   = cond2_interactions$node,
    title                   = least_similar$pair,
    subtitle                = cond2
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.29 secs

5.2.2.3 Condition 1 only

An example of a pair only in condition 1 is COL1A1:a10b1 complex.

plot_communication_graph(
    LRP                     = cond1_only[1],
    weight_array            = cond1_interactions$weight_array,
    ligand_receptor_pair_df = cond1_interactions$ligand_receptor_pair_df,
    nodes                   = cond1_interactions$node,
    title                   = cond1_only[1],
    subtitle                = cond1
)

Version Author Date
259369a Luke Zappia 2020-06-04
plot_communication_graph(
    LRP                     = cond1_only[1],
    weight_array            = cond2_interactions$weight_array,
    ligand_receptor_pair_df = cond2_interactions$ligand_receptor_pair_df,
    nodes                   = cond2_interactions$node,
    title                   = cond1_only[1],
    subtitle                = cond2
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.29 secs

5.2.2.4 Condition 2 only

An example of a pair only in condition 2 is FN1:aVb3 complex.

plot_communication_graph(
    LRP                     = cond2_only[1],
    weight_array            = cond1_interactions$weight_array,
    ligand_receptor_pair_df = cond1_interactions$ligand_receptor_pair_df,
    nodes                   = cond1_interactions$node,
    title                   = cond2_only[1],
    subtitle                = cond1
)

Version Author Date
259369a Luke Zappia 2020-06-04
plot_communication_graph(
    LRP                     = cond2_only[1],
    weight_array            = cond2_interactions$weight_array,
    ligand_receptor_pair_df = cond2_interactions$ligand_receptor_pair_df,
    nodes                   = cond2_interactions$node,
    title                   = cond2_only[1],
    subtitle                = cond2
)

Version Author Date
259369a Luke Zappia 2020-06-04

Chunk time: 0.34 secs

Summary

Parameters

This table describes parameters used and set in this document.

params <- list(
    
)
params <- toJSON(params, pretty = TRUE)
kable(fromJSON(params))

Chunk time: 0.01 secs

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

lrp_clusters$dissim_matrix %>%
    as.data.frame() %>%
    rownames_to_column("Pair") %>%
    write_tsv(fs::path(OUT_DIR, "cluster_dissimilarity.tsv"))

tibble(Pair = names(lrp_clusters$clusters), Cluster = lrp_clusters$clusters) %>%
    write_tsv(fs::path(OUT_DIR, "clusters.tsv"))

write_rds(
    lrp_clusters$weight_array_by_cluster,
    fs::path(OUT_DIR, "cluster_weights.Rds")
)

write_tsv(patterns, fs::path(OUT_DIR, "patterns.tsv"))

write_tsv(result$sorted_LRP_df, fs::path(OUT_DIR, "comparison_pairs.tsv"))

result$dissim_cond1_cond2 %>%
    as.data.frame() %>%
    rownames_to_column("Condition1") %>%
    write_tsv(fs::path(OUT_DIR, "comparison_dissimilarity.tsv"))

kable(data.frame(
    File = c(
        download_link("parameters.json", OUT_DIR),
        download_link("cluster_dissimilarity.tsv", OUT_DIR),
        download_link("clusters.tsv", OUT_DIR),
        download_link("cluster_weights.Rds", OUT_DIR),
        download_link("patterns.tsv", OUT_DIR),
        download_link("comparison_pairs.tsv", OUT_DIR),
        download_link("comparison_dissimilarity.tsv", OUT_DIR)
    ),
    Description = c(
        "Parameters set and used in this analysis",
        "Cluster dissimilarity matrix",
        "Cluster assignments for pairs",
        "Cluster average weights array",
        "Pattern dissimilarity for pairs",
        "Comparison information about pairs",
        "Comparison dissimilarity matrix"
    )
))
File Description
parameters.json Parameters set and used in this analysis
cluster_dissimilarity.tsv Cluster dissimilarity matrix
clusters.tsv Cluster assignments for pairs
cluster_weights.Rds Cluster average weights array
patterns.tsv Pattern dissimilarity for pairs
comparison_pairs.tsv Comparison information about pairs
comparison_dissimilarity.tsv Comparison dissimilarity matrix

Chunk time: 0.1 secs

Session information


sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.0 (2020-04-24)
 os       macOS Catalina 10.15.7      
 system   x86_64, darwin17.0          
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Europe/Berlin               
 date     2020-11-24                  

─ Packages ───────────────────────────────────────────────────────────────────
 ! package        * version   date       lib
 P askpass          1.1       2019-01-13 [?]
 P assertthat       0.2.1     2019-03-21 [?]
 P backports        1.1.6     2020-04-05 [?]
 P base64enc        0.1-3     2015-07-28 [?]
 P base64url        1.4       2018-05-14 [?]
   BiocGenerics     0.34.0    2020-04-27 [1]
 P broom            0.5.6     2020-04-20 [?]
 P cellranger       1.1.0     2016-07-27 [?]
 P circlize         0.4.9     2020-04-30 [?]
 P cli              2.0.2     2020-02-28 [?]
   clue             0.3-57    2019-02-25 [1]
 P cluster          2.1.0     2019-06-19 [?]
 P colorspace       1.4-1     2019-03-18 [?]
 P ComplexHeatmap * 2.5.4     2020-07-29 [?]
   COMUNET        * 0.1.0     2020-06-03 [1]
 P conflicted     * 1.0.4     2019-06-21 [?]
 P crayon           1.3.4     2017-09-16 [?]
 P DBI              1.1.0     2019-12-15 [?]
 P dbplyr           1.4.3     2020-04-19 [?]
 P digest           0.6.25    2020-02-23 [?]
 P dplyr          * 0.8.5     2020-03-07 [?]
 P drake            7.12.0    2020-03-25 [?]
   dynamicTreeCut * 1.63-1    2016-03-11 [1]
 P ellipsis         0.3.0     2019-09-20 [?]
 P evaluate         0.14      2019-05-28 [?]
 P fansi            0.4.1     2020-01-08 [?]
 P farver           2.0.3     2020-01-16 [?]
 P filelock         1.0.2     2018-10-05 [?]
 P forcats        * 0.5.0     2020-03-01 [?]
 P fs             * 1.4.1     2020-04-04 [?]
 P generics         0.0.2     2018-11-29 [?]
 P GetoptLong       0.1.8     2020-01-08 [?]
 P ggplot2        * 3.3.0     2020-03-05 [?]
 P git2r            0.27.1    2020-05-03 [?]
 P GlobalOptions    0.1.1     2019-09-30 [?]
 P glue           * 1.4.0     2020-04-03 [?]
 P gtable           0.3.0     2019-03-25 [?]
 P haven            2.2.0     2019-11-08 [?]
 P here           * 0.1       2017-05-28 [?]
 P highr            0.8       2019-03-20 [?]
 P hms              0.5.3     2020-01-08 [?]
 P htmltools        0.5.0     2020-06-16 [?]
 P httpuv           1.5.2     2019-09-11 [?]
 P httr             1.4.1     2019-08-05 [?]
 P igraph         * 1.2.5     2020-03-19 [?]
   IRanges          2.22.2    2020-05-21 [1]
 P jsonlite       * 1.6.1     2020-02-02 [?]
 P knitr          * 1.28      2020-02-06 [?]
 P labeling         0.3       2014-08-23 [?]
 P later            1.0.0     2019-10-04 [?]
 P lattice          0.20-41   2020-04-02 [?]
 P lifecycle        0.2.0     2020-03-06 [?]
 P lubridate        1.7.8     2020-04-06 [?]
 P magrittr         1.5       2014-11-22 [?]
 P Matrix           1.2-18    2019-11-27 [?]
 P memoise          1.1.0     2017-04-21 [?]
 P modelr           0.1.7     2020-04-30 [?]
 P munsell          0.5.0     2018-06-12 [?]
 P nlme             3.1-147   2020-04-13 [?]
 P openssl          1.4.1     2019-07-18 [?]
 P pander         * 0.6.3     2018-11-06 [?]
 P pillar           1.4.4     2020-05-05 [?]
 P pkgconfig        2.0.3     2019-09-22 [?]
   png              0.1-7     2013-12-03 [1]
 P prettyunits      1.1.1     2020-01-24 [?]
 P progress         1.2.2     2019-05-16 [?]
 P promises         1.1.0     2019-10-04 [?]
 P purrr          * 0.3.4     2020-04-17 [?]
 P R.methodsS3      1.8.0     2020-02-14 [?]
 P R.oo             1.23.0    2019-11-03 [?]
 P R.utils          2.9.2     2019-12-08 [?]
 P R6               2.4.1     2019-11-12 [?]
 P RColorBrewer     1.1-2     2014-12-07 [?]
 P Rcpp             1.0.4.6   2020-04-09 [?]
 P readr          * 1.3.1     2018-12-21 [?]
 P readxl           1.3.1     2019-03-13 [?]
 P renv             0.12.0    2020-08-28 [?]
 P repr             1.1.0     2020-01-28 [?]
 P reprex           0.3.0     2019-05-16 [?]
 P reticulate       1.16      2020-05-27 [?]
   rjson            0.2.20    2018-06-08 [1]
 P rlang            0.4.6     2020-05-02 [?]
 P rmarkdown        2.1       2020-01-20 [?]
 P rprojroot        1.3-2     2018-01-03 [?]
   RSpectra         0.16-0    2019-12-01 [1]
 P rstudioapi       0.11      2020-02-07 [?]
 P rvest            0.3.5     2019-11-08 [?]
   S4Vectors        0.26.1    2020-05-16 [1]
 P scales           1.1.0     2019-11-18 [?]
 P SDMTools       * 1.1-221.2 2019-11-30 [?]
 P sessioninfo      1.1.1     2018-11-05 [?]
 P shape            1.4.4     2018-02-07 [?]
 P skimr          * 2.1.1     2020-04-16 [?]
 P storr            1.2.1     2018-10-18 [?]
 P stringi          1.4.6     2020-02-17 [?]
 P stringr        * 1.4.0     2019-02-10 [?]
 P tibble         * 3.0.1     2020-04-20 [?]
 P tidyr          * 1.0.3     2020-05-07 [?]
 P tidyselect       1.0.0     2020-01-27 [?]
 P tidyverse      * 1.3.0     2019-11-21 [?]
 P txtq             0.2.0     2019-10-15 [?]
 P umap           * 0.2.5.0   2020-03-09 [?]
 P vctrs            0.2.4     2020-03-10 [?]
 P whisker          0.4       2019-08-28 [?]
 P withr            2.2.0     2020-04-20 [?]
 P workflowr        1.6.2     2020-04-30 [?]
 P xfun             0.13      2020-04-13 [?]
 P xml2             1.3.2     2020-04-23 [?]
 P yaml             2.2.1     2020-02-01 [?]
 source                                  
 standard (@1.1)                         
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.4)                         
 Bioconductor                            
 CRAN (R 4.0.0)                          
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.4-1)                       
 Github (jokergoo/ComplexHeatmap@d38254f)
 Github (ScialdoneLab/COMUNET@4fd4635)   
 standard (@1.0.4)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.14)                        
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.0.2)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.3.0)                       
 standard (@2.2.0)                       
 standard (@0.1)                         
 standard (@0.8)                         
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 standard (@1.5.2)                       
 standard (@1.4.1)                       
 CRAN (R 4.0.0)                          
 Bioconductor                            
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.3)                         
 standard (@1.0.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.2-18)                      
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 standard (@0.5.0)                       
 CRAN (R 4.0.0)                          
 standard (@1.4.1)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.1-2)                       
 CRAN (R 4.0.0)                          
 standard (@1.3.1)                       
 standard (@1.3.1)                       
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 standard (@0.3.0)                       
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.3.5)                       
 Bioconductor                            
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.2.1)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.3.0)                       
 standard (@0.2.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.4)                         
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          

[1] /Users/luke.zappia/Documents/Projects/interaction-tools/renv/library/R-4.0/x86_64-apple-darwin17.0
[2] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpOqMPdA/renv-system-library
[3] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpqYMqtc/renv-system-library
[4] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpQ26PTS/renv-system-library

 P ── Loaded and on-disk path mismatch.

Chunk time: 0.2 secs

LS0tCnRpdGxlOiAiQ09NVU5FVCBleGFtcGxlIgpvdXRwdXQ6IHdvcmtmbG93cjo6d2Zsb3dfaHRtbAplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogY29uc29sZQotLS0KCmBgYHtyIHNldHVwLCBjYWNoZSA9IEZBTFNFfQojIFNldHVwIGRvY3VtZW50CnNvdXJjZShoZXJlOjpoZXJlKCJjb2RlIiwgInNldHVwLlIiKSkKCiMgRnVuY3Rpb24gZGVwZW5kZW5jaWVzCmludmlzaWJsZShkcmFrZTo6cmVhZGQoZG93bmxvYWRfbGluaykpCmBgYAoKSW50cm9kdWN0aW9uIHsudW5udW1iZXJlZH0KPT09PT09PT09PT09CgpJbiB0aGlzIGRvY3VtZW50IHdlIGFyZSBnb2luZyB0byBydW4gdGhyb3VnaCB0aGUgZXhhbXBsZSBhbmFseXNpcyBmb3IgdGhlCioqQ09NVU5FVCoqIHBhY2thZ2UgYW5kIGhhdmUgYSBsb29rIGF0IHRoZSBvdXRwdXQgaXQgcHJvZHVjZXMuIE1vcmUgaW5mb3JtYXRpb24KYWJvdXQgKipDT01VTkVUKiogY2FuIGJlIGZvdW5kIGF0IGh0dHBzOi8vZ2l0aHViLmNvbS9TY2lhbGRvbmVMYWIvQ09NVU5FVC4KCmBgYHtyIGxpYnJhcmllc30KbGlicmFyeSgiQ09NVU5FVCIpCmBgYAoKSW5wdXQKPT09PT0KClRoZSAqKkNPTVVORVQqKiBwYWNrYWdlIHBlcmZvcm1zIGRvd25zdHJlYW0gYW5hbHlzaXMgYmFzZWQgb24gdGhlIHJlc3VsdHMgb2YgCmFueSBhbGdvcml0aG0gd2hpY2ggcHJvZHVjZXMgYSBtYXRyaXggb2Ygd2VpZ2h0cyByZXByZXNlbnRpbmcgdGhlIHN0cmVuZ3RoIG9mCmludGVyYWN0aW9ucyBiZXR3ZWVuIHR3byBjZWxsIHR5cGUgZnJvbSBhIGxpZ2FuZC1yZWNlcHRvciBwYWlyLgoKRm9yIHRoZWlyIHR1dG9yaWFscyB0aGUgYXV0aG9ycyBoYXZlIHVzZWQgdGhlIG91dHB1dCBwcm9kdWNlZCBieQoqKkNlbGxQaG9uZURCKiouCgpDZWxsUGhvbmVEQiBkYXRhYmFzZQotLS0tLS0tLS0tLS0tLS0tLS0tLQoKV2UgcmVxdWlyZSB0d28gb2YgdGhlIGZpbGVzIHdoaWNoIG1ha2UgdXAgdGhlICoqQ2VsbFBob25lREIqKiBkYXRhYmFzZS4KCiMjIyBjb21wbGV4X2lucHV0LmNzdgoKVGhpcyBmaWxlIGNvbnRhaW5zIGluZm9ybWF0aW9uIGFib3V0IHRoZSBjb21wbGV4ZXMgaW4gdGhlICoqQ2VsbFBob25lREIqKgpkYXRhYmFzZS4KCmBgYHtyIGlucHV0LWNvbXBsZXh9CmNvbXBsZXhfaW5wdXQgPC0gcmVhZF9jc3YoCiAgICBmczo6cGF0aCgKICAgICAgICBQQVRIUyRjZWxscGhvbmVkYl9pbiwKICAgICAgICAiZGF0YWJhc2VfdjIuMC4wIiwKICAgICAgICAiZGF0YSIsCiAgICAgICAgImNvbXBsZXhfaW5wdXQuY3N2IgogICAgKSwKICAgIGNvbF90eXBlcyA9IGNvbHMoCiAgICAgICAgY29tcGxleF9uYW1lICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHVuaXByb3RfMSAgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICB1bmlwcm90XzIgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgdW5pcHJvdF8zICAgICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHVuaXByb3RfNCAgICAgICAgICA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgdHJhbnNtZW1icmFuZSAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICBwZXJpcGhlcmFsICAgICAgICAgPSBjb2xfbG9naWNhbCgpLAogICAgICAgIHNlY3JldGVkICAgICAgICAgICA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgc2VjcmV0ZWRfZGVzYyAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHNlY3JldGVkX2hpZ2hsaWdodCA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgcmVjZXB0b3IgICAgICAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICByZWNlcHRvcl9kZXNjICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgaW50ZWdyaW4gICAgICAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICBvdGhlciAgICAgICAgICAgICAgPSBjb2xfbG9naWNhbCgpLAogICAgICAgIG90aGVyX2Rlc2MgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBwZGJfaWQgICAgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgcGRiX3N0cnVjdHVyZSAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHN0b2ljaGlvbWV0cnkgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBjb21tZW50c19jb21wbGV4ICAgPSBjb2xfY2hhcmFjdGVyKCkKICAgICkKKSAlPiUKICAgIG11dGF0ZShjb21wbGV4X25hbWUgPSBnc3ViKCJfIiAsICIgIiAsIGNvbXBsZXhfbmFtZSkpCgpza2ltKGNvbXBsZXhfaW5wdXQpCmBgYAoKIyMjIGdlbmVfaW5wdXQuY3N2CgpUaGlzIGZpbGUgY29udGFpbnMgaW5mb3JtYXRpb24gYWJvdXQgdGhlIGdlbmVzIGluIHRoZSAqKkNlbGxQaG9uZURCKiogZGF0YWJhc2UuCgpgYGB7ciBpbnB1dC1nZW5lfQpnZW5lX2lucHV0IDwtIHJlYWRfY3N2KAogICAgZnM6OnBhdGgoCiAgICAgICAgUEFUSFMkY2VsbHBob25lZGJfaW4sCiAgICAgICAgImRhdGFiYXNlX3YyLjAuMCIsCiAgICAgICAgImRhdGEiLAogICAgICAgICJnZW5lX2lucHV0LmNzdiIKICAgICksCiAgICBjb2xfdHlwZXMgPSBjb2xzKAogICAgICAgIGdlbmVfbmFtZSAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHVuaXByb3QgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGhnbmNfc3ltYm9sID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGVuc2VtYmwgICAgID0gY29sX2NoYXJhY3RlcigpCiAgICApCikKCnNraW0oZ2VuZV9pbnB1dCkKYGBgCgpDZWxsUGhvbmVEQiBvdXRwdXQKLS0tLS0tLS0tLS0tLS0tLS0tCgpPdXRwdXQgZmlsZXMgZnJvbSBydW5uaW5nICoqQ2VsbFBob25lREIqKgoKIyMjIHNpZ25pZmljYW50X21lYW5zLnR4dAoKSW5mb3JtYXRpb24gYWJvdXQgZWFjaCBsaWdhbmQtcmVjZXB0b3IgcGFpciBhcyB3ZWxsIGFzIHNjb3JlcyBmb3IgZWFjaCBwYWlyIG9mCmNlbGwgdHlwZXMgY2FsY3VsYXRlZCBieSAqKkNlbGxQaG9uZURCKiouCgpgYGB7ciBpbnB1dC1tZWFuc30KbWVhbnMgPC0gcmVhZF90c3YoCiAgICBmczo6cGF0aChQQVRIUyRDT01VTkVUX2luLCAibW91c2UiLCAic2lnbmlmaWNhbnRfbWVhbnMudHh0IiksCiAgICBjb2xfdHlwZXMgPSBjb2xzKAogICAgICAgIC5kZWZhdWx0ID0gY29sX2RvdWJsZSgpLAogICAgICAgIGlkX2NwX2ludGVyYWN0aW9uICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgaW50ZXJhY3RpbmdfcGFpciAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBwYXJ0bmVyX2EgICAgICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHBhcnRuZXJfYiAgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgZ2VuZV9hICAgICAgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBnZW5lX2IgICAgICAgICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHNlY3JldGVkICAgICAgICAgICAgPSBjb2xfbG9naWNhbCgpLAogICAgICAgIHJlY2VwdG9yX2EgICAgICAgICAgPSBjb2xfbG9naWNhbCgpLAogICAgICAgIHJlY2VwdG9yX2IgICAgICAgICAgPSBjb2xfbG9naWNhbCgpLAogICAgICAgIGFubm90YXRpb25fc3RyYXRlZ3kgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgaXNfaW50ZWdyaW4gICAgICAgICA9IGNvbF9sb2dpY2FsKCkKICAgICkKKQoKc2tpbShtZWFucykKYGBgCgpDb252ZXJ0IENlbGxQaG9uZURCIG91dHB1dAo9PT09PT09PT09PT09PT09PT09PT09PT09PQoKVGhlIGZpcnN0IHN0ZXAgaXMgdG8gY29udmVydCB0aGUgb3V0cHV0IGZyb20gKipDZWxsUGhvbmVEQioqIGludG8gdGhlIGZvcm1hdAp1c2VkIGJ5ICoqQ09NVU5FVCoqLiBJbnN0ZWFkIG9mIHRoZSBzaW5nbGUgbWF0cml4IHByb3ZpZGVkIGJ5ICoqQ2VsbFBob25lREIqKiwKKipDT01VTkVUKiogbmVlZHMgYSBtYXRyaXggZm9yIGVhY2ggbGlnYW5kLXJlY2VwdG9yIHBhaXIgd2hlcmUgdGhlIHJvd3MgYXJlCnNlbmRpbmcgY2VsbCB0eXBlcyBhbmQgdGhlIGNvbHVtbnMgYXJlIHJlY2VpdmluZyBjZWxsIHR5cGVzLgoKYGBge3IgY29udmVydH0KcHJlcHBlZF9tZWFucyA8LSBtZWFucyAlPiUKICAgIGFzLmRhdGEuZnJhbWUoKSAlPiUKICAgIGRpc3RpbmN0KGludGVyYWN0aW5nX3BhaXIsIC5rZWVwX2FsbCA9IFRSVUUpCnJvd25hbWVzKHByZXBwZWRfbWVhbnMpIDwtIHByZXBwZWRfbWVhbnMkaW50ZXJhY3RpbmdfcGFpcgoKaW50ZXJhY3Rpb25zIDwtIGNvbnZlcnRfQ2VsbFBob25lREJfb3V0cHV0KAogICAgQ2VsbFBob25lREJfb3V0cHV0ID0gcHJlcHBlZF9tZWFucywKICAgIGNvbXBsZXhfaW5wdXQgICAgICA9IGNvbXBsZXhfaW5wdXQsCiAgICBnZW5lX2lucHV0ICAgICAgICAgPSBnZW5lX2lucHV0CikKYGBgCgpUaGUgcmVzdWx0IG9mIHRoZSBjb252ZXJzaW9uIGZ1bmN0aW9uIGlzIGEgbGlzdCB3aXRoCioqYHIgbGVuZ3RoKGludGVyYWN0aW9ucylgKiogaXRlbXMuCgpXZWlnaHQgYXJyYXkKLS0tLS0tLS0tLS0tCgpUaGUgZmlyc3QgaXRlbSBpcyBhIHRocmVlLWRpbWVuc2lvbmFsIGFycmF5IHdpdGggdGhlIHdlaWdodHMgY2FsY3VsYXRlZCBieQoqKkNlbGxQaG9uZURCKiouIFRoZXJlIGFyZSAqKmByIGRpbShpbnRlcmFjdGlvbnMkd2VpZ2h0X2FycmF5KVszXWAqKiBvZiB0aGVzZQptYXRyaWNlcywgaGVyZSBpcyBhbiBleGFtcGxlIG9mIHRoZSBmaXJzdCBvbmUuCgpgYGB7ciBjb252ZXJ0LXdlaWdodHN9CnBhbmRlcihpbnRlcmFjdGlvbnMkd2VpZ2h0X2FycmF5WywgLCAxXSkKYGBgCgpMaWdhbmQtcmVjZXB0b3IgcGFpcnMKLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgpUaGUgc2Vjb25kIGl0ZW0gY29udGFpbnMgaW5mb3JtYXRpb24gYWJvdXQgbGlnYW5kLXJlY2VwdG9yIHBhaXJzLgoKYGBge3IgY29udmVydC1wYWlyc30Kc2tpbShpbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYpCmBgYAoKTm9kZXMKLS0tLS0KClRoZSBmaW5hbCBpdGVtIGlzIGEgdmVjdG9yIG9mIHRoZSBuYW1lcyBvZiBhbGwgdGhlIGNlbGwgdHlwZXM6CmByIGdsdWVfY29sbGFwc2UoZ2x1ZSgiKip7aW50ZXJhY3Rpb25zJG5vZGVzfSoqIiksIHNlcCA9ICIsICIpYAoKQ2x1c3RlcmluZyBpbnRlcmFjdGlvbiBwYXJ0bmVycwo9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09CgpUaGUgYWltIG9mIHRoaXMgYW5hbHlzaXMgaXMgdG8gZmluZCBsaWdhbmQtcmVjZXB0b3IgcGFpcnMgdGhhdCBpbnRlcmFjdCBpbgpzaW1pbGFyIHdheXMuIFRoaXMgaXMgZG9uZSBieSBjbHVzdGVyaW5nIHRoZSBjb21tdW5pY2F0aW9uIGdyYXBocyBvZiB0aGUKbGlnYW5kLXJlY2VwdG9yIHBhaXJzLgoKYGBge3IgY2x1c3RlcmluZ30KbHJwX2NsdXN0ZXJzIDwtIGxycF9jbHVzdGVyaW5nKAogICAgd2VpZ2h0X2FycmF5ICAgICAgICAgICAgPSBpbnRlcmFjdGlvbnMkd2VpZ2h0X2FycmF5LAogICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBpbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICBub2RlcyAgICAgICAgICAgICAgICAgICA9IGludGVyYWN0aW9ucyRub2RlcwopCmBgYAoKT3V0cHV0Ci0tLS0tLQoKVGhpcyBzdGVwIHByb2R1Y2VzIGEgbGlzdCB3aXRoICoqYHIgbGVuZ3RoKGxycF9jbHVzdGVycylgKiogaXRlbXMuCgojIyMgRGlzc2ltaWxhcml0eSBtYXRyaXgKCk1hdHJpeCB3aXRoIGRpc3RhbmNlcyBiZXR3ZWVuIGVhY2ggbGlnYW5kLXJlY2VwdG9yIHBhaXIuIEhlcmUgaXMgYSBzbWFsbApleGFtcGxlLgoKYGBge3IgY2x1c3RlcmluZy1kaXNzaW19CnBhbmRlcihscnBfY2x1c3RlcnMkZGlzc2ltX21hdHJpeFsxOjUsIDE6NV0pCmBgYAoKIyMjIENsdXN0ZXJzCgpDbHVzdGVyIGFzc2lnbm1lbnRzIGZvciBlYWNoIGxpZ2FuZC1yZWNlcHRvciBwYWlyLgoKYGBge3IgY2x1c3RlcmluZy1jbHVzdGVyc30Ka2FibGUoaGVhZChscnBfY2x1c3RlcnMkY2x1c3RlcnMpKQpgYGAKCiMjIyBDbHVzdGVyIHdlaWdodCBhcnJheQoKVGhlIGF2ZXJhZ2UgaW50ZXJhY3Rpb24gd2VpZ2h0cyBiZXR3ZWVuIGNlbGwgdHlwZXMgYnkgY2x1c3Rlci4gVGhlcmUgYXJlCioqYHIgZGltKGxycF9jbHVzdGVycyR3ZWlnaHRfYXJyYXlfYnlfY2x1c3RlcilbM11gKiogb2YgdGhlc2UgbWF0cmljZXMsIGhlcmUgaXMKYW4gZXhhbXBsZSBvZiB0aGUgZmlyc3Qgb25lLiAKCmBgYHtyIGNsdXN0ZXJpbmctd2VpZ2h0c30KcGFuZGVyKGxycF9jbHVzdGVycyR3ZWlnaHRfYXJyYXlfYnlfY2x1c3RlclssICwgMV0pCmBgYAoKVmlzdWFsaXNhdGlvbgotLS0tLS0tLS0tLS0tCgpXZSBjYW4gdmlzdWFsaXNlIHRoZSByZXN1bHRzIGluIGRpZmZlcmVudCB3YXlzLgoKIyMjIEhlYXRtYXAKCldlIGNhbiBwbG90IGEgaGVhdG1hcCBvZiB0aGUgY2x1c3RlcmVkIGxpZ2FuZC1yZWNlcHRvciBwYWlycy4KCmBgYHtyIGNsdXN0ZXJpbmctaGVhdG1hcH0KcGxvdF9jbHVzdGVyX2hlYXRtYXAoCiAgICBkaXNzaW1fbWF0cml4ID0gbHJwX2NsdXN0ZXJzJGRpc3NpbV9tYXRyaXgsCiAgICBscnBfY2x1c3RlcnMgID0gbHJwX2NsdXN0ZXJzJGNsdXN0ZXJzCikKYGBgCgojIyMgVU1BUAoKV2UgY2FuIGFsc28gbWFrZSBhIFVNQVAgcGxvdCBzaG93aW5nIHRoZSBwYWlycyBpbiBhIHJlZHVjZWQgZGltZW5zaW9uYWwgc3BhY2UuCgpgYGB7ciBjbHVzdGVyaW5nLXVtYXB9CnBsb3RfY2x1c3Rlcl9VTUFQKAogICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBpbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICBkaXNzaW1fbWF0cml4ICAgICAgICAgICA9IGxycF9jbHVzdGVycyRkaXNzaW1fbWF0cml4LAogICAgbHJwX2NsdXN0ZXJzICAgICAgICAgICAgPSBscnBfY2x1c3RlcnMkY2x1c3RlcnMKKQpgYGAKCiMjIyBDb21tdW5pY2F0aW9uIHBhdHRlcm4KClRoZSBhdmVyYWdlIGNvbW11bmljYXRpb24gYmV0d2VlbiBjZWxsIHR5cGVzIGZvciBlYWNoIGNsdXN0ZXIgY2FuIGJlIHNob3duIGFzIGEKZ3JhcGguIEhlcmUgYXJlIGV4YW1wbGVzIGZvciB0aGUgZmlyc3QgdGhyZWUgY2x1c3RlcnMuCgpgYGB7ciBjbHVzdGVyaW5nLXBhdHRlcm59CmZvcihjbHVzdGVyX2lkeCBpbiBjKDE6MykpewogICAgY2x1c3RlciA8LSBwYXN0ZSgiY2x1c3RlciIsIGNsdXN0ZXJfaWR4KQogICAgcGxvdF9jb21tdW5pY2F0aW9uX2dyYXBoKAogICAgICAgIExSUCA9IGNsdXN0ZXIsCiAgICAgICAgd2VpZ2h0X2FycmF5ICAgICAgICAgICAgPSBscnBfY2x1c3RlcnMkd2VpZ2h0X2FycmF5X2J5X2NsdXN0ZXJbLCAsIGNsdXN0ZXJdLAogICAgICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgICAgIG5vZGVzICAgICAgICAgICAgICAgICAgID0gaW50ZXJhY3Rpb25zJG5vZGVzLAogICAgICAgIGlzX2NsdXN0ZXIgICAgICAgICAgICAgID0gVFJVRQogICAgKQp9CmBgYAoKIyMjIFBhaXJzCgpXZSBjYW4gYWxzbyBsb29rIGF0IHRoZSBzcGVjaWZpYyBsaWdhbmQtcmVjZXB0b3IgcGFpcnMgaW4gYSBjbHVzdGVyLgoKYGBge3IgY2x1c3RlcmluZy1wYWlyc30KZm9yKGNsdXN0ZXJfaWR4IGluIGMoMTozKSkgewogICAgcGxvdF9saWdfcmVjKAogICAgICAgIGNsdXN0ZXJfb2ZfaW50ZXJlc3QgICAgID0gY2x1c3Rlcl9pZHgsCiAgICAgICAgbHJwX2NsdXN0ZXJzICAgICAgICAgICAgPSBscnBfY2x1c3RlcnMkY2x1c3RlcnMsCiAgICAgICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBpbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICAgICAgbm9kZV9sYWJlbF9jZXggICAgICAgICAgPSAwLjUKICAgICkKfQpgYGAKClBhdHRlcm4gc2VhcmNoCj09PT09PT09PT09PT09CgoqKkNPTVVORVQqKiBjYW4gYWxzbyBiZSB1c2VkIHRvIHNlYXJjaCBmb3Igc3BlY2lmaWMgcGF0dGVybnMgb2YgaW50ZXJhY3Rpb25zLgpIZXJlIHdlIHNlYXJjaCBmb3IgaW50ZXJhY3Rpb25zIGZyb20gYSBzcGVjaWZpYyBjZWxsIHR5cGUgdG8gYWxsIG90aGVyIGNlbGwKdHlwZXMuCgpGaXJzdCB3ZSBjb25zdHJ1Y3QgYSBtYXRyaXggZGVzY3JpYmluZyB0aGUgcGF0dGVybiB3ZSBhcmUgaW50ZXJlc3RlZCBpbi4KCmBgYHtyIHBhdHRlcm59CmNvbW11bmljYXRpbmdfbm9kZXMgPC0gYygKICAgICJleFZFX3RvX0VQSSIsICJleFZFX3RvX01lcyIsICJleFZFX3RvX1RFIiwgImV4VkVfdG9fZW1WRSIsICJleFZFX3RvX2V4VkUiCikKCnBhdHRlcm4gPC0gbWFrZV9wYXR0ZXJuX21hdHJpeCgKICAgIGNvbW11bmljYXRpbmdfbm9kZXMgPSBjb21tdW5pY2F0aW5nX25vZGVzLAogICAgbm9kZXMgICAgICAgICAgICAgICA9IGludGVyYWN0aW9ucyRub2RlcwopCgpwYW5kZXIocGF0dGVybikKYGBgCgpXZSBjYW4gYWxzbyB2aXN1YWxpc2UgdGhpcyBwYXR0ZXJuIHRvIGNoZWNrIGl0IGlzIGNvcnJlY3QuCgpgYGB7ciBwYXR0ZXJuLXZpc30KcGxvdF9jb21tdW5pY2F0aW9uX2dyYXBoKAogICAgTFJQID0gIk15IHBhdHRlcm4gb2YgaW50ZXJlc3QiLAogICAgd2VpZ2h0X2FycmF5ICAgICAgICAgICAgPSBwYXR0ZXJuLAogICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBpbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICBub2RlcyAgICAgICAgICAgICAgICAgICA9IGludGVyYWN0aW9ucyRub2RlLAogICAgaXNfcGF0dGVybiAgICAgICAgICAgICAgPSBUUlVFCikKYGBgCgpOb3cgd2UgY2FuIHNlYXJjaCBmb3IgdGhpcyBwYXR0ZXJuLiBUaGUgcmVzdWx0IGlzIGEgZGlzc2ltaWxhcml0eSB0byB0aGUgc2VhcmNoCnBhdHRlcm4gZm9yIGVhY2ggbGlnYW5kLXJlY2VwdG9yIHBhaXIuCgpgYGB7ciBwYXR0ZXJuLXNlYXJjaH0KcGF0dGVybnMgPC0gcGF0dGVybl9zZWFyY2goCiAgICBwYXR0ZXJuX2Fkal9tYXRyaXggICAgICA9IHBhdHRlcm4sCiAgICB3ZWlnaHRfYXJyYXkgICAgICAgICAgICA9IGludGVyYWN0aW9ucyR3ZWlnaHRfYXJyYXksCiAgICBsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiA9IGludGVyYWN0aW9ucyRsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiwKICAgIG5vZGVzICAgICAgICAgICAgICAgICAgID0gaW50ZXJhY3Rpb25zJG5vZGVzCikKCnNraW0ocGF0dGVybnMpCmBgYAoKV2UgY2FuIHZpc3VhbGlzZSBleGFtcGxlcyBvZiBzb21lIGxpZ2FuZC1yZWNlcHRvciBwYWlycyBhbG9uZyB3aXRoIHRoZWlyCmRpc3NpbWlsYXJpdHkgdG8gdGhlIHNlYXJjaCBwYXR0ZXJuLgoKYGBge3IgcGF0dGVybi1wYWlyc30KZm9yIChwYWlyIGluIGMoIklHRjI6SUdGMlIiLCAiRUZOQjE6RVBIQTQiLCAiSUdGMjpJR0YxUiIpKSB7CiAgICBwbG90X2NvbW11bmljYXRpb25fZ3JhcGgoCiAgICAgICAgTFJQICAgICAgICAgICAgICAgICAgICAgPSBwYWlyLAogICAgICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgICAgICBsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiA9IGludGVyYWN0aW9ucyRsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiwKICAgICAgICBub2RlcyAgICAgICAgICAgICAgICAgICA9IGludGVyYWN0aW9ucyRub2RlLAogICAgICAgIHN1YnRpdGxlICAgICAgICAgICAgICAgID0gcGFzdGUoCiAgICAgICAgICAgICJkaXNzaW1pbGFyaXR5OiIsIHBhdHRlcm5zW3BhaXIsImRpc3NpbWlsYXJpdHkiXQogICAgICAgICkKICAgICkgICAgCn0KYGBgCgpDb21wYXJhdGl2ZSBhbmFseXNpcwo9PT09PT09PT09PT09PT09PT09PQoKV2UgY2FuIGFsc28gdXNlICoqQ09NVU5FVCoqIHRvIGNvbXBhcmUgdGhlIGludGVyYWN0aW9uIG5ldHdvcmsgYmV0d2VlbiB0d28KY29uZGl0aW9ucy4gRm9yIHRoaXMgYW5hbHlzaXMgd2UgdXNlIGEgc2Vjb25kIGRhdGFzZXQgdGhhdCBpbmNsdWRlcyBBTUwgc2FtcGxlcwpiZWZvcmUgYW5kIGFmdGVyIHRyZWF0bWVudC4KCmBgYHtyIHJlYWQtQU1MfQpjb25kMSA8LSAiQU1MMzI4X2QwIgpjb25kMiA8LSAiQU1MMzI4X2QyOSIKCmNvbmQxX21lYW5zIDwtIHJlYWRfdHN2KAogICAgZnM6OnBhdGgoUEFUSFMkQ09NVU5FVF9pbiwgIkFNTCIsICJtZWFuc19kMC50eHQiKSwKICAgIGNvbF90eXBlcyA9IGNvbHMoCiAgICAgICAgLmRlZmF1bHQgPSBjb2xfZG91YmxlKCksCiAgICAgICAgaWRfY3BfaW50ZXJhY3Rpb24gICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBpbnRlcmFjdGluZ19wYWlyICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIHBhcnRuZXJfYSAgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgcGFydG5lcl9iICAgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBnZW5lX2EgICAgICAgICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGdlbmVfYiAgICAgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgc2VjcmV0ZWQgICAgICAgICAgICA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgcmVjZXB0b3JfYSAgICAgICAgICA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgcmVjZXB0b3JfYiAgICAgICAgICA9IGNvbF9sb2dpY2FsKCksCiAgICAgICAgYW5ub3RhdGlvbl9zdHJhdGVneSA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBpc19pbnRlZ3JpbiAgICAgICAgID0gY29sX2xvZ2ljYWwoKQogICAgKQopCgpjb25kMl9tZWFucyA8LSByZWFkX3RzdigKICAgIGZzOjpwYXRoKFBBVEhTJENPTVVORVRfaW4sICJBTUwiLCAibWVhbnNfZDI5LnR4dCIpLAogICAgY29sX3R5cGVzID0gY29scygKICAgICAgICAuZGVmYXVsdCA9IGNvbF9kb3VibGUoKSwKICAgICAgICBpZF9jcF9pbnRlcmFjdGlvbiAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGludGVyYWN0aW5nX3BhaXIgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgcGFydG5lcl9hICAgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBwYXJ0bmVyX2IgICAgICAgICAgID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGdlbmVfYSAgICAgICAgICAgICAgPSBjb2xfY2hhcmFjdGVyKCksCiAgICAgICAgZ2VuZV9iICAgICAgICAgICAgICA9IGNvbF9jaGFyYWN0ZXIoKSwKICAgICAgICBzZWNyZXRlZCAgICAgICAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICByZWNlcHRvcl9hICAgICAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICByZWNlcHRvcl9iICAgICAgICAgID0gY29sX2xvZ2ljYWwoKSwKICAgICAgICBhbm5vdGF0aW9uX3N0cmF0ZWd5ID0gY29sX2NoYXJhY3RlcigpLAogICAgICAgIGlzX2ludGVncmluICAgICAgICAgPSBjb2xfbG9naWNhbCgpCiAgICApCikKCmNvbmQxX3ByZXBwZWRfbWVhbnMgPC0gY29uZDFfbWVhbnMgJT4lCiAgICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgICBkaXN0aW5jdChpbnRlcmFjdGluZ19wYWlyLCAua2VlcF9hbGwgPSBUUlVFKQpyb3duYW1lcyhjb25kMV9wcmVwcGVkX21lYW5zKSA8LSBjb25kMV9wcmVwcGVkX21lYW5zJGludGVyYWN0aW5nX3BhaXIKCmNvbmQyX3ByZXBwZWRfbWVhbnMgPC0gY29uZDJfbWVhbnMgJT4lCiAgICBhcy5kYXRhLmZyYW1lKCkgJT4lCiAgICBkaXN0aW5jdChpbnRlcmFjdGluZ19wYWlyLCAua2VlcF9hbGwgPSBUUlVFKQpyb3duYW1lcyhjb25kMl9wcmVwcGVkX21lYW5zKSA8LSBjb25kMl9wcmVwcGVkX21lYW5zJGludGVyYWN0aW5nX3BhaXIKCmNvbmQxX2ludGVyYWN0aW9ucyA8LSBjb252ZXJ0X0NlbGxQaG9uZURCX291dHB1dCgKICAgIENlbGxQaG9uZURCX291dHB1dCA9IGNvbmQxX3ByZXBwZWRfbWVhbnMsCiAgICBjb21wbGV4X2lucHV0ICAgICAgPSBjb21wbGV4X2lucHV0LAogICAgZ2VuZV9pbnB1dCAgICAgICAgID0gZ2VuZV9pbnB1dAopCgpjb25kMl9pbnRlcmFjdGlvbnMgPC0gY29udmVydF9DZWxsUGhvbmVEQl9vdXRwdXQoCiAgICBDZWxsUGhvbmVEQl9vdXRwdXQgPSBjb25kMl9wcmVwcGVkX21lYW5zLAogICAgY29tcGxleF9pbnB1dCAgICAgID0gY29tcGxleF9pbnB1dCwKICAgIGdlbmVfaW5wdXQgICAgICAgICA9IGdlbmVfaW5wdXQKKQpgYGAKCkZpcnN0IHdlIGNoZWNrIHRoZSBvdmVybGFwIGluIGxpZ2FuZC1yZWNlcHRvciBwYWlycyBpbiB0aGUgdHdvIGNvbmRpdGlvbnMuCgpgYGB7ciBvdmVybGFwfQpjb25kMV9wYWlycyA8LSBjb25kMV9pbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYkcGFpcgpjb25kMl9wYWlycyA8LSBjb25kMl9pbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYkcGFpcgoKaW50ZXIgPC0gaW50ZXJzZWN0KGNvbmQxX3BhaXJzLCBjb25kMl9wYWlycykKY29uZDFfb25seSA8LSBzZXRkaWZmKGNvbmQxX3BhaXJzLCBjb25kMl9wYWlycykKY29uZDJfb25seSA8LSBzZXRkaWZmKGNvbmQyX3BhaXJzLCBjb25kMV9wYWlycykKYGBgCgpUaGVyZSBhcmUgKipgciBsZW5ndGgoaW50ZXIpYCoqIHBhaXJzIHByZXNlbnQgaW4gYm90aCBjb25kaXRpb25zLAoqKmByIGxlbmd0aChjb25kMV9vbmx5KWAqKiwgcHJlc2VudCBvbmx5IGluIHRoZSBmaXJzdCBjb25kaXRpb24gYW5kCioqYHIgbGVuZ3RoKGNvbmQyX29ubHkpYCoqIHByZXNlbnQgaW4gb25seSB0aGUgc2Vjb25kIGNvbmRpdGlvbi4KCkp1c3QgYmVjYXVzZSB0aGUgcGFpcnMgYXJlIHByZXNlbnQgZG9lc24ndCBtZWFuIHRoZXkgYXJlIGludGVyYWN0aW5nIGluIHRoZSBzYW1lCndheS4gVG8gZmluZCB0aGF0IG91dCB3ZSBuZWVkIHRvIHJ1biB0aGUgYW5hbHlzaXMuCgpgYGB7ciBjb21wYXJlfQpyZXN1bHQgPC0gY29tcGFyYXRpdmVfYW5hbHlzaXMoCiAgICBjb25kMV93ZWlnaHRfYXJyYXkgICAgICAgICAgICA9IGNvbmQxX2ludGVyYWN0aW9ucyR3ZWlnaHRfYXJyYXksCiAgICBjb25kMl93ZWlnaHRfYXJyYXkgICAgICAgICAgICA9IGNvbmQyX2ludGVyYWN0aW9ucyR3ZWlnaHRfYXJyYXksCiAgICBjb25kMV9saWdhbmRfcmVjZXB0b3JfcGFpcl9kZiA9IGNvbmQxX2ludGVyYWN0aW9ucyRsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiwKICAgIGNvbmQyX2xpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDJfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgY29uZDFfbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMV9pbnRlcmFjdGlvbnMkbm9kZXMsCiAgICBjb25kMl9ub2RlcyAgICAgICAgICAgICAgICAgICA9IGNvbmQyX2ludGVyYWN0aW9ucyRub2RlcywKICAgIGNvbmQxX25hbWUgICAgICAgICAgICAgICAgICAgID0gY29uZDEsCiAgICBjb25kMl9uYW1lICAgICAgICAgICAgICAgICAgICA9IGNvbmQyCikKYGBgCgpPdXRwdXQKLS0tLS0tCgpUaGUgb3V0cHV0IG9mIHRoZSBjb21wYXJpc29uIGZ1bmN0aW9uIGlzIGEgbGlzdCB3aXRoICoqYHIgbGVuZ3RoKHJlc3VsdClgKioKaXRlbXMuCgojIyMgUGFpcnMKClRoZSBmaXJzdCBpdGVtIGRlc2NyaWJlcyB0aGUgbGlnYW5kLXJlY2VwdG9yIHBhaXJzLCB3aGljaCBjb25kaXRpb25zIHRoYXQgYXJlCnByZXNlbnQgaW4gYW5kIHRoZSBkaXNzaW1pbGFyaXR5IGJldHdlZW4gdGhlIGNvbmRpdGlvbnMuCgpgYGB7ciBjb21wYXJpc29uLXBhaXJzfQpza2ltKHJlc3VsdCRzb3J0ZWRfTFJQX2RmKQpgYGAKCiMjIyBEaXNzaW1pbGFyaXR5CgpUaGUgc2Vjb25kIG91dHB1dCBpcyBhIGRpc3NpbWlsYXJpdHkgbWF0cml4IHdoZXJlIHRoZSByb3dzIGFyZSBsaWdhbmQtcmVjZXB0b3IKcGFpcnMgaW4gY29uZGl0aW9uIDEgYW5kIGFuZCB0aGUgY29sdW1ucyBhcmUgbGlnYW5kLXJlY2VwdG9yIHBhaXJzIGluIGNvbmRpdGlvbgoyLgoKYGBge3IgY29tcGFyaXNvbi1kaXNzaW19CnBhbmRlcihyZXN1bHQkZGlzc2ltX2NvbmQxX2NvbmQyWzE6NSwgMTo1XSkKYGBgCgpWaXN1YWxpc2F0aW9uCi0tLS0tLS0tLS0tLS0KCiMjIyBIZWF0bWFwCgpXZSBjYW4gcGxvdCBhIGhlYXRtYXAgb2YgdGhlIGRpc3NpbWlsYXJpdHkgYmV0d2VlbiBjb25kaXRpb25zLgoKYGBge3IgY29tcGFyaXNvbi1oZWF0bWFwfQpwbG90X2Rpc3NpbWlsYXJpdHlfaGVhdG1hcHMoCiAgICBkaXNzaW1fY29uZDFfY29uZDIgPSByZXN1bHQkZGlzc2ltX2NvbmQxX2NvbmQyLAogICAgc29ydGVkX0xSUF9kZiAgICAgID0gcmVzdWx0JHNvcnRlZF9MUlBfZGYsCiAgICBjb25kMV9uYW1lICAgICAgICAgPSBjb25kMSwKICAgIGNvbmQyX25hbWUgICAgICAgICA9IGNvbmQyCikKYGBgCgojIyMgR3JhcGhzCgpHcmFwaHMgY2FuIGJlIHVzZWQgdG8gc2hvdyB0aGUgY29tbXVuaWNhdGlvbiBuZXR3b3JrcyBmb3IgYSBsaWdhbmQtcmVjZXB0b3IKcGFpci4gTGV0J3MgY29tcGFyZSB0aGUgZ3JhcGhzIGJldHdlZW4gY29uZGl0aW9ucyBmb3IgYSBzZXQgb2YgZXhhbXBsZSBwYWlycy4KCiMjIyMgTW9zdCBzaW1pbGFyCgpgYGB7ciBjb21wYXJpc29uLW1vc3R9Cm1vc3Rfc2ltaWxhciA8LSByZXN1bHQkc29ydGVkX0xSUF9kZiAlPiUKICAgIGZpbHRlcigKICAgICAgICBwcmVzZW5jZSAgICAgID09ICJzaGFyZWQiLAogICAgICAgIGRpc3NpbWlsYXJpdHkgPT0gbWluKGRpc3NpbWlsYXJpdHkpCiAgICApCmBgYAoKVGhlIG1vc3Qgc2ltaWxhciBwYWlyIGlzICoqYHIgbW9zdF9zaW1pbGFyJHBhaXJgKiogd2l0aCBhIGRpc3NpbWlsYXJpdHkgb2YKKipgciBtb3N0X3NpbWlsYXIkZGlzc2ltaWxhcml0eWAqKi4KCmBgYHtyIGNvbXBhcmlzb24tbW9zdC1ncmFwaH0KcGxvdF9jb21tdW5pY2F0aW9uX2dyYXBoKAogICAgTFJQICAgICAgICAgICAgICAgICAgICAgPSBtb3N0X3NpbWlsYXIkcGFpciwKICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gY29uZDFfaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDFfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMV9pbnRlcmFjdGlvbnMkbm9kZSwKICAgIHRpdGxlICAgICAgICAgICAgICAgICAgID0gbW9zdF9zaW1pbGFyJHBhaXIsCiAgICBzdWJ0aXRsZSAgICAgICAgICAgICAgICA9IGNvbmQxCikKCnBsb3RfY29tbXVuaWNhdGlvbl9ncmFwaCgKICAgIExSUCAgICAgICAgICAgICAgICAgICAgID0gbW9zdF9zaW1pbGFyJHBhaXIsCiAgICB3ZWlnaHRfYXJyYXkgICAgICAgICAgICA9IGNvbmQyX2ludGVyYWN0aW9ucyR3ZWlnaHRfYXJyYXksCiAgICBsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiA9IGNvbmQyX2ludGVyYWN0aW9ucyRsaWdhbmRfcmVjZXB0b3JfcGFpcl9kZiwKICAgIG5vZGVzICAgICAgICAgICAgICAgICAgID0gY29uZDJfaW50ZXJhY3Rpb25zJG5vZGUsCiAgICB0aXRsZSAgICAgICAgICAgICAgICAgICA9IG1vc3Rfc2ltaWxhciRwYWlyLAogICAgc3VidGl0bGUgICAgICAgICAgICAgICAgPSBjb25kMgopCmBgYAoKIyMjIyBMZWFzdCBzaW1pbGFyCgpgYGB7ciBjb21wYXJpc29uLWxlYXN0fQpsZWFzdF9zaW1pbGFyIDwtIHJlc3VsdCRzb3J0ZWRfTFJQX2RmICU+JQogICAgZmlsdGVyKAogICAgICAgIHByZXNlbmNlICAgICAgPT0gInNoYXJlZCIsCiAgICAgICAgZGlzc2ltaWxhcml0eSA9PSBtYXgoZGlzc2ltaWxhcml0eSkKICAgICkgJT4lCiAgICB0b3BfbigxLCBwYWlyKQpgYGAKClRoZSBsZWFzdCBzaW1pbGFyIHBhaXIgaXMgKipgciBsZWFzdF9zaW1pbGFyJHBhaXJgKiogd2l0aCBhIGRpc3NpbWlsYXJpdHkgb2YKKipgciBsZWFzdF9zaW1pbGFyJGRpc3NpbWlsYXJpdHlgKiouCgpgYGB7ciBjb21wYXJpc29uLWxlYXN0LWdyYXBofQpwbG90X2NvbW11bmljYXRpb25fZ3JhcGgoCiAgICBMUlAgICAgICAgICAgICAgICAgICAgICA9IGxlYXN0X3NpbWlsYXIkcGFpciwKICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gY29uZDFfaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDFfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMV9pbnRlcmFjdGlvbnMkbm9kZSwKICAgIHRpdGxlICAgICAgICAgICAgICAgICAgID0gbGVhc3Rfc2ltaWxhciRwYWlyLAogICAgc3VidGl0bGUgICAgICAgICAgICAgICAgPSBjb25kMQopCgpwbG90X2NvbW11bmljYXRpb25fZ3JhcGgoCiAgICBMUlAgICAgICAgICAgICAgICAgICAgICA9IGxlYXN0X3NpbWlsYXIkcGFpciwKICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gY29uZDJfaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDJfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMl9pbnRlcmFjdGlvbnMkbm9kZSwKICAgIHRpdGxlICAgICAgICAgICAgICAgICAgID0gbGVhc3Rfc2ltaWxhciRwYWlyLAogICAgc3VidGl0bGUgICAgICAgICAgICAgICAgPSBjb25kMgopCmBgYAoKIyMjIyBDb25kaXRpb24gMSBvbmx5CgpBbiBleGFtcGxlIG9mIGEgcGFpciBvbmx5IGluIGNvbmRpdGlvbiAxIGlzICoqYHIgY29uZDFfb25seVsxXWAqKi4KCmBgYHtyIGNvbXBhcmlzb24tY29uZDEtZ3JhcGh9CnBsb3RfY29tbXVuaWNhdGlvbl9ncmFwaCgKICAgIExSUCAgICAgICAgICAgICAgICAgICAgID0gY29uZDFfb25seVsxXSwKICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gY29uZDFfaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDFfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMV9pbnRlcmFjdGlvbnMkbm9kZSwKICAgIHRpdGxlICAgICAgICAgICAgICAgICAgID0gY29uZDFfb25seVsxXSwKICAgIHN1YnRpdGxlICAgICAgICAgICAgICAgID0gY29uZDEKKQoKcGxvdF9jb21tdW5pY2F0aW9uX2dyYXBoKAogICAgTFJQICAgICAgICAgICAgICAgICAgICAgPSBjb25kMV9vbmx5WzFdLAogICAgd2VpZ2h0X2FycmF5ICAgICAgICAgICAgPSBjb25kMl9pbnRlcmFjdGlvbnMkd2VpZ2h0X2FycmF5LAogICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBjb25kMl9pbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICBub2RlcyAgICAgICAgICAgICAgICAgICA9IGNvbmQyX2ludGVyYWN0aW9ucyRub2RlLAogICAgdGl0bGUgICAgICAgICAgICAgICAgICAgPSBjb25kMV9vbmx5WzFdLAogICAgc3VidGl0bGUgICAgICAgICAgICAgICAgPSBjb25kMgopCmBgYAoKIyMjIyBDb25kaXRpb24gMiBvbmx5CgpBbiBleGFtcGxlIG9mIGEgcGFpciBvbmx5IGluIGNvbmRpdGlvbiAyIGlzICoqYHIgY29uZDJfb25seVsxXWAqKi4KCmBgYHtyIGNvbXBhcmlzb24tY29uZDItZ3JhcGh9CnBsb3RfY29tbXVuaWNhdGlvbl9ncmFwaCgKICAgIExSUCAgICAgICAgICAgICAgICAgICAgID0gY29uZDJfb25seVsxXSwKICAgIHdlaWdodF9hcnJheSAgICAgICAgICAgID0gY29uZDFfaW50ZXJhY3Rpb25zJHdlaWdodF9hcnJheSwKICAgIGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmID0gY29uZDFfaW50ZXJhY3Rpb25zJGxpZ2FuZF9yZWNlcHRvcl9wYWlyX2RmLAogICAgbm9kZXMgICAgICAgICAgICAgICAgICAgPSBjb25kMV9pbnRlcmFjdGlvbnMkbm9kZSwKICAgIHRpdGxlICAgICAgICAgICAgICAgICAgID0gY29uZDJfb25seVsxXSwKICAgIHN1YnRpdGxlICAgICAgICAgICAgICAgID0gY29uZDEKKQoKcGxvdF9jb21tdW5pY2F0aW9uX2dyYXBoKAogICAgTFJQICAgICAgICAgICAgICAgICAgICAgPSBjb25kMl9vbmx5WzFdLAogICAgd2VpZ2h0X2FycmF5ICAgICAgICAgICAgPSBjb25kMl9pbnRlcmFjdGlvbnMkd2VpZ2h0X2FycmF5LAogICAgbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYgPSBjb25kMl9pbnRlcmFjdGlvbnMkbGlnYW5kX3JlY2VwdG9yX3BhaXJfZGYsCiAgICBub2RlcyAgICAgICAgICAgICAgICAgICA9IGNvbmQyX2ludGVyYWN0aW9ucyRub2RlLAogICAgdGl0bGUgICAgICAgICAgICAgICAgICAgPSBjb25kMl9vbmx5WzFdLAogICAgc3VidGl0bGUgICAgICAgICAgICAgICAgPSBjb25kMgopCmBgYAoKU3VtbWFyeSB7LnVubnVtYmVyZWR9Cj09PT09PT0KClBhcmFtZXRlcnMgey51bm51bWJlcmVkfQotLS0tLS0tLS0tCgpUaGlzIHRhYmxlIGRlc2NyaWJlcyBwYXJhbWV0ZXJzIHVzZWQgYW5kIHNldCBpbiB0aGlzIGRvY3VtZW50LgoKYGBge3IgcGFyYW1ldGVyc30KcGFyYW1zIDwtIGxpc3QoCiAgICAKKQpwYXJhbXMgPC0gdG9KU09OKHBhcmFtcywgcHJldHR5ID0gVFJVRSkKa2FibGUoZnJvbUpTT04ocGFyYW1zKSkKYGBgCgpPdXRwdXQgZmlsZXMgey51bm51bWJlcmVkfQotLS0tLS0tLS0tLS0KClRoaXMgdGFibGUgZGVzY3JpYmVzIHRoZSBvdXRwdXQgZmlsZXMgcHJvZHVjZWQgYnkgdGhpcyBkb2N1bWVudC4gUmlnaHQgY2xpY2sKYW5kIF9TYXZlIExpbmsgQXMuLi5fIHRvIGRvd25sb2FkIHRoZSByZXN1bHRzLgoKYGBge3Igb3V0cHV0fQpscnBfY2x1c3RlcnMkZGlzc2ltX21hdHJpeCAlPiUKICAgIGFzLmRhdGEuZnJhbWUoKSAlPiUKICAgIHJvd25hbWVzX3RvX2NvbHVtbigiUGFpciIpICU+JQogICAgd3JpdGVfdHN2KGZzOjpwYXRoKE9VVF9ESVIsICJjbHVzdGVyX2Rpc3NpbWlsYXJpdHkudHN2IikpCgp0aWJibGUoUGFpciA9IG5hbWVzKGxycF9jbHVzdGVycyRjbHVzdGVycyksIENsdXN0ZXIgPSBscnBfY2x1c3RlcnMkY2x1c3RlcnMpICU+JQogICAgd3JpdGVfdHN2KGZzOjpwYXRoKE9VVF9ESVIsICJjbHVzdGVycy50c3YiKSkKCndyaXRlX3JkcygKICAgIGxycF9jbHVzdGVycyR3ZWlnaHRfYXJyYXlfYnlfY2x1c3RlciwKICAgIGZzOjpwYXRoKE9VVF9ESVIsICJjbHVzdGVyX3dlaWdodHMuUmRzIikKKQoKd3JpdGVfdHN2KHBhdHRlcm5zLCBmczo6cGF0aChPVVRfRElSLCAicGF0dGVybnMudHN2IikpCgp3cml0ZV90c3YocmVzdWx0JHNvcnRlZF9MUlBfZGYsIGZzOjpwYXRoKE9VVF9ESVIsICJjb21wYXJpc29uX3BhaXJzLnRzdiIpKQoKcmVzdWx0JGRpc3NpbV9jb25kMV9jb25kMiAlPiUKICAgIGFzLmRhdGEuZnJhbWUoKSAlPiUKICAgIHJvd25hbWVzX3RvX2NvbHVtbigiQ29uZGl0aW9uMSIpICU+JQogICAgd3JpdGVfdHN2KGZzOjpwYXRoKE9VVF9ESVIsICJjb21wYXJpc29uX2Rpc3NpbWlsYXJpdHkudHN2IikpCgprYWJsZShkYXRhLmZyYW1lKAogICAgRmlsZSA9IGMoCiAgICAgICAgZG93bmxvYWRfbGluaygicGFyYW1ldGVycy5qc29uIiwgT1VUX0RJUiksCiAgICAgICAgZG93bmxvYWRfbGluaygiY2x1c3Rlcl9kaXNzaW1pbGFyaXR5LnRzdiIsIE9VVF9ESVIpLAogICAgICAgIGRvd25sb2FkX2xpbmsoImNsdXN0ZXJzLnRzdiIsIE9VVF9ESVIpLAogICAgICAgIGRvd25sb2FkX2xpbmsoImNsdXN0ZXJfd2VpZ2h0cy5SZHMiLCBPVVRfRElSKSwKICAgICAgICBkb3dubG9hZF9saW5rKCJwYXR0ZXJucy50c3YiLCBPVVRfRElSKSwKICAgICAgICBkb3dubG9hZF9saW5rKCJjb21wYXJpc29uX3BhaXJzLnRzdiIsIE9VVF9ESVIpLAogICAgICAgIGRvd25sb2FkX2xpbmsoImNvbXBhcmlzb25fZGlzc2ltaWxhcml0eS50c3YiLCBPVVRfRElSKQogICAgKSwKICAgIERlc2NyaXB0aW9uID0gYygKICAgICAgICAiUGFyYW1ldGVycyBzZXQgYW5kIHVzZWQgaW4gdGhpcyBhbmFseXNpcyIsCiAgICAgICAgIkNsdXN0ZXIgZGlzc2ltaWxhcml0eSBtYXRyaXgiLAogICAgICAgICJDbHVzdGVyIGFzc2lnbm1lbnRzIGZvciBwYWlycyIsCiAgICAgICAgIkNsdXN0ZXIgYXZlcmFnZSB3ZWlnaHRzIGFycmF5IiwKICAgICAgICAiUGF0dGVybiBkaXNzaW1pbGFyaXR5IGZvciBwYWlycyIsCiAgICAgICAgIkNvbXBhcmlzb24gaW5mb3JtYXRpb24gYWJvdXQgcGFpcnMiLAogICAgICAgICJDb21wYXJpc29uIGRpc3NpbWlsYXJpdHkgbWF0cml4IgogICAgKQopKQpgYGAKClNlc3Npb24gaW5mb3JtYXRpb24gey51bm51bWJlcmVkfQotLS0tLS0tLS0tLS0tLS0tLS0tCg==