Last updated: 2020-11-24

Checks: 7 0

Knit directory: interaction-tools/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191213) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0333fe3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .drake/
    Ignored:    data/COMUNET/
    Ignored:    data/CellChat/
    Ignored:    data/ICELLNET/
    Ignored:    data/NicheNet/
    Ignored:    data/cellphonedb/
    Ignored:    data/celltalker/
    Ignored:    output/14-CellChat.Rmd/
    Ignored:    output/15-talklr.Rmd/
    Ignored:    output/16-CiteFuse.Rmd/
    Ignored:    output/17-scTHI.Rmd/
    Ignored:    output/18-celltalker.Rmd/
    Ignored:    output/index.Rmd/
    Ignored:    renv/library/
    Ignored:    renv/python/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   _drake.R
    Modified:   output/11-CellPhoneDB.Rmd/count_network.txt
    Modified:   output/11-CellPhoneDB.Rmd/dotplot.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_counts.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_logcounts.png
    Modified:   output/11-CellPhoneDB.Rmd/interactions_count.txt
    Modified:   output/11-CellPhoneDB.Rmd/pvalues.txt
    Modified:   output/11-CellPhoneDB.Rmd/significant_means.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/14-CellChat.Rmd) and HTML (docs/14-CellChat.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9940762 Luke Zappia 2020-09-24 Add talklr to drake
Rmd b6db7b4 Luke Zappia 2020-07-30 Add CellChat walkthrough
html b6db7b4 Luke Zappia 2020-07-30 Add CellChat walkthrough
Rmd f017448 Luke Zappia 2020-07-29 Setup CellChat
html f017448 Luke Zappia 2020-07-29 Setup CellChat

# Setup document
source(here::here("code", "setup.R"))

# Function dependencies
invisible(drake::readd(download_link))

Introduction

In this document we are going to run through the example analysis for the CellChat package and have a look at the output it produces. More information about CellChat can be found at https://github.com/sqjin/CellChat.

library("CellChat")
library("ggalluvial")

Chunk time: 2.71 secs

1 Input

CellChat requires two user inputs: an expression matrix and either cell-type labels or a low-dimensional embedding. Here we use the label-based mode. The other inputs to CellChat are the ligand-receptor database and protein-protein interaction network included in the package.

load(fs::path(PATHS$CellChat_in, "data_wound_CellChat.rda"))

Chunk time: 1.91 secs

1.1 Expression matrix

The expression matrix should be normalised with genes as rows and cells as columns. Here is a snippet of the example dataset:

expr <- data_wound$data

pander(as.matrix(expr[1:5, 1:5]))
Table continues below
  AAACCTGAGATGTGGC AAACCTGAGGTGTTAA AAACCTGAGTATCTCG
Xkr4 0 0 0
Sox17 0 0 0
Mrpl15 0 1.724 0
Lypla1 0 0 0
Tcea1 1.432 0 0
  AAACCTGCAAAGCAAT AAACCTGCAGCTTCGG
Xkr4 0 0
Sox17 0 0
Mrpl15 0 0
Lypla1 0 0
Tcea1 1.418 0

Chunk time: 0.14 secs

The full matrix has 17090 rows (genes) and 21557 columns (cells).

1.2 Labels

The second input is a data.frame with cell type labels for each cell.

labels <- data.frame(
    group     = data_wound$labels,
    row.names = names(data_wound$labels)
)
group_size <- as.numeric(table(labels$group))

skim(labels)
Data summary
Name labels
Number of rows 21557
Number of columns 1
_______________________
Column type frequency:
factor 1
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
group 0 1 FALSE 25 FIB: 5073, FIB: 2817, FIB: 1957, FIB: 1323

Chunk time: 0.06 secs

1.3 Database

The database is available as a list. The tutorial suggests using only the interactions annotated with “Secreted Signalling”.

CellChatDB <- CellChatDB.mouse
CellChatDB <- subsetDB(CellChatDB, search = "Secreted Signaling")

Chunk time: 0.15 secs

The database list contains 4 items: interaction, complex, cofactor and geneInfo

1.3.1 Interaction

The first item in the list is a data.frame with information about interactions.

skim(CellChatDB$interaction)
Data summary
Name CellChatDB$interaction
Number of rows 1211
Number of columns 11
_______________________
Column type frequency:
character 11
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
interaction_name 0 1 6 21 0 1211 0
pathway_name 0 1 2 12 0 141 0
ligand 0 1 2 12 0 361 0
receptor 0 1 3 18 0 363 0
agonist 0 1 0 15 868 5 0
antagonist 0 1 0 18 755 11 0
co_A_receptor 0 1 0 25 829 9 0
co_I_receptor 0 1 0 27 724 10 0
evidence 0 1 12 45 0 376 0
annotation 0 1 18 18 0 1 0
interaction_name_2 0 1 9 26 0 1211 0

Chunk time: 0.08 secs

1.3.2 Complex

The second item contain information about complexes.

skim(CellChatDB$complex)
Data summary
Name CellChatDB$complex
Number of rows 155
Number of columns 4
_______________________
Column type frequency:
character 4
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
subunit_1 0 1 3 7 0 96 0
subunit_2 0 1 3 7 0 70 0
subunit_3 0 1 0 6 142 10 0
subunit_4 0 1 0 3 154 2 0

Chunk time: 0.05 secs

1.3.3 Cofactor

The next item contains information about cofactors.

skim(CellChatDB$cofactor)
Data summary
Name CellChatDB$cofactor
Number of rows 31
Number of columns 16
_______________________
Column type frequency:
character 16
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
cofactor1 0 1 2 6 0 25 0
cofactor2 0 1 0 6 19 12 0
cofactor3 0 1 0 6 22 9 0
cofactor4 0 1 0 8 24 7 0
cofactor5 0 1 0 6 25 6 0
cofactor6 0 1 0 6 26 5 0
cofactor7 0 1 0 6 28 4 0
cofactor8 0 1 0 6 28 4 0
cofactor9 0 1 0 5 29 3 0
cofactor10 0 1 0 7 29 3 0
cofactor11 0 1 0 5 30 2 0
cofactor12 0 1 0 5 30 2 0
cofactor13 0 1 0 6 30 2 0
cofactor14 0 1 0 6 30 2 0
cofactor15 0 1 0 7 30 2 0
cofactor16 0 1 0 4 30 2 0

Chunk time: 0.09 secs

1.3.4 Gene info

The final item in the database is gene annotation information.

skim(CellChatDB$geneInfo)
Data summary
Name CellChatDB$geneInfo
Number of rows 45544
Number of columns 6
_______________________
Column type frequency:
character 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Symbol 0 1 1 16 0 45544 0
Name 0 1 5 139 0 45528 0
EntrezGene.ID 0 1 4 9 0 45536 1
Ensembl.Gene.ID 0 1 0 18 5 36640 0
HomoloGene.ID 0 1 0 6 4 18941 0
HGNC.ID 0 1 0 85 2 17932 0

Chunk time: 0.25 secs

1.4 Network

The network is a binary matrix showing interactions between proteins.

pander(as.matrix(PPI.mouse[1:5, 1:5]))
  Cdh1 Bcl6b Pparg Raf1 Kat2b
Cdh1 0 0 0 0 0
Bcl6b 0 0 0 0 0
Pparg 0 0 0 0 0
Raf1 0 0 0 0 0
Kat2b 0 0 0 0 0

Chunk time: 0.01 secs

The full matrix has 557 rows and 557 columns.

2 Create CellChat object

CellChat uses a custom object which we can create from the expression matrix and labels. We also store the database here.

cellchat <- createCellChat(expr)
cellchat <- addMeta(cellchat, meta = labels, meta.name = "labels")
cellchat <- setIdent(cellchat, ident.use = "labels")
cellchat@DB <- CellChatDB

cellchat
An object of class CellChat 
 17090 genes.
 21557 cells.

Chunk time: 0.01 secs

3 Pre-processing

3.1 Subset signalling genes

First we subset the object to select only the signalling genes that are listed in the database.

cellchat <- subsetData(cellchat)

cellchat
An object of class CellChat 
 17090 genes.
 21557 cells.

Chunk time: 0.19 secs

3.2 Identify over-expression

The next step is to identify over-expressed genes and interactions. Over-expressed genes are detected using a one-sided Wilcoxon test. Interactions are selected if either a ligand or receptor is over-expressed.

cellchat <- identifyOverExpressedGenes(cellchat)
cellchat <- identifyOverExpressedInteractions(cellchat)

Chunk time: 4.16 mins

This step has identified 539 genes and 666 interactions.

3.3 Project data

The gene expression data is then projected onto a protein-protein interaction network.

cellchat <- projectData(cellchat, PPI.mouse)

Chunk time: 1.63 secs

4 Communication network inference

4.1 Compute communication probability

At this stage we can now compute the communication probability and infer the communication network. The results are stored in the net slot of the CellChat object which contains three-dimensional arrays of probabilities and p-values for interactions between each pair of cell types for each interaction pair. Here are snippets of these arrays for the first interaction pair.

cellchat <- computeCommunProb(cellchat)

pander(cellchat@net$prob[1:5, 1:5, 1])
  FIB-A FIB-B FIB-C FIB-D FIB-E
FIB-A 0 0 1.186e-07 1.152e-06 5.496e-07
FIB-B 0 0 0 0 0
FIB-C 0 0 8.06e-08 7.834e-07 3.737e-07
FIB-D 0 0 7.92e-08 7.707e-07 3.676e-07
FIB-E 0 0 5.006e-08 4.868e-07 2.322e-07
pander(cellchat@net$pval[1:5, 1:5, 1])
  FIB-A FIB-B FIB-C FIB-D FIB-E
FIB-A 1 1 0 0 0
FIB-B 1 1 1 1 1
FIB-C 1 1 0 0 0
FIB-D 1 1 0.09 0 0
FIB-E 1 1 0.22 0 0

Chunk time: 4.56 mins

4.2 Infer pathway signalling

We also compute the communication probabilities at the pathway level by summarising all ligand-receptor interactions associated with each pathway. The output is similar but now instead of interaction pairs we have pathways.

cellchat <- computeCommunProbPathway(cellchat)

pander(cellchat@netP$prob[1:5, 1:5, 1])
  FIB-A FIB-B FIB-C FIB-D FIB-E
FIB-A 0 0 1.186e-07 1.152e-06 5.496e-07
FIB-B 0 0 0 0 0
FIB-C 0 0 8.06e-08 7.834e-07 3.737e-07
FIB-D 0 0 8.283e-08 1.577e-06 7.521e-07
FIB-E 0 0 5.867e-08 1.057e-06 5.043e-07

Chunk time: 1.09 secs

4.3 Aggregate network

We can get an aggregated communication network by counting the number of links between cell types or summarising the communication probabilities. These results are stored as two-dimensional matrices.

cellchat <- aggregateNet(cellchat)

pander(cellchat@net$count[1:5, 1:5])
  FIB-A FIB-B FIB-C FIB-D FIB-E
FIB-A 5 3 6 8 8
FIB-B 4 1 1 2 4
FIB-C 5 2 4 6 8
FIB-D 12 9 15 19 21
FIB-E 15 13 20 25 29
pander(cellchat@net$sum[1:5, 1:5])
  FIB-A FIB-B FIB-C FIB-D FIB-E
FIB-A 4.806e-06 7.669e-07 1.322e-06 4.156e-06 2.752e-06
FIB-B 1.435e-05 3.489e-06 1.862e-06 2.748e-06 2.677e-06
FIB-C 4.64e-06 2.509e-06 1.434e-06 3.339e-06 2.769e-06
FIB-D 5.496e-05 0.0001328 7.748e-05 0.0001942 0.0001317
FIB-E 2.67e-05 7.208e-05 4.105e-05 0.0001038 7.044e-05

Chunk time: 0.04 secs

5 Network analysis

CellChat can perform analysis on the communication network to better understand the roles of each cell type. Here we perform that analysis using the pathway scores. The output is a list with a set of metrics for cell type for each pathway.

cellchat <- netAnalysis_signalingRole(cellchat, slot.name = "netP")

Chunk time: 1.81 secs

The network metrics are: outdeg, indeg, hub, authority, eigen, page_rank, betweenness, flowbet and info

6 Global patterns

It may also be interesting to identify common communication patterns. We can do this for both outgoing and incoming patterns.

cellchat <- identifyCommunicationPatterns(cellchat, pattern = "outgoing", k = 5)
cellchat <- identifyCommunicationPatterns(cellchat, pattern = "incoming", k = 5)

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 6.79 secs

7 Manifold learning and classification

CellChat can identify groups of signalling pathways by embedding and clustering them.

7.1 Functional similarity

Functional similarity indicates that major senders and receivers are similar and can be interpreted as the two pathways or interaction pairs exhibiting similar and/or redundant roles.

The output is a similarity matrix, UMAP embedding and cluster assignments from \(k\)-means.

cellchat <- computeNetSimilarity(cellchat, type = "functional", thresh = 0.25)
cellchat <- netEmbedding(cellchat, type = "functional")
cellchat <- netClustering(cellchat, type = "functional", k = 4)

pander(cellchat@netP$similarity$functional$matrix[1:5,1:5])
  TGFb ncWNT EGF PDGF IGF
TGFb 1 0 0.008282 0.03183 0.009311
ncWNT 0 1 0 0 0
EGF 0.008282 0 1 0.08182 0
PDGF 0.03183 0 0.08182 1 0
IGF 0.009311 0 0 0 1
pander(cellchat@netP$similarity$functional$dr[1:5, ])
  UMAP1 UMAP2
TGFb -2.434 5.187
ncWNT -2.311 2.232
EGF -3.18 2.811
PDGF -2.357 3.149
IGF -5.963 -2.334
cellchat@netP$similarity$functional$group
    TGFb    ncWNT      EGF     PDGF      IGF   APELIN      CCL     CXCL 
       3        1        1        1        2        4        3        4 
     MIF      IL1      CSF      TNF     SPP1   ANGPTL       MK      PTN 
       3        4        3        3        2        2        2        2 
     KIT    SEMA3      GAS GALECTIN     PROS 
       4        2        1        3        1 

Chunk time: 10.23 secs

7.2 Structural similarity

Structural similarity is used to compare the signalling network structure, without considering the similarity of senders and receivers.

cellchat <- computeNetSimilarity(cellchat, type = "structural", thresh = 0.25)
cellchat <- netEmbedding(cellchat, type = "structural")
cellchat <- netClustering(cellchat, type = "structural", k = 4)

pander(cellchat@netP$similarity$structural$matrix[1:5,1:5])
  TGFb ncWNT EGF PDGF IGF
TGFb 1 0 0 0 0
ncWNT 0 1 0.3642 0.5772 0.3458
EGF 0 0.3642 1 0.5978 0.5932
PDGF 0 0.5772 0.5978 1 0.6122
IGF 0 0.3458 0.5932 0.6122 1
pander(cellchat@netP$similarity$structural$dr[1:5, ])
  UMAP1 UMAP2
TGFb -14.25 -2.163
ncWNT 21.32 -6.326
EGF 21.53 -5.578
PDGF 21.78 -5.973
IGF 20.43 -5.638
cellchat@netP$similarity$structural$group
    TGFb    ncWNT      EGF     PDGF      IGF   APELIN      CCL     CXCL 
       2        1        1        1        1        3        4        3 
     MIF      IL2      IL1      CSF      TNF    RANKL     SPP1   ANGPTL 
       2        3        4        1        1        3        4        2 
   ANGPT       MK      PTN      EDN      KIT    SEMA3      GAS GALECTIN 
       3        2        2        3        3        1        3        4 
    PROS 
       3 

Chunk time: 9.98 secs

8 Visualisation

8.1 Signalling pathways

8.1.1 Hierarchy plot

Here solid circles are sources and open circles are targets. Circle sizes are the number of cells in each group and lines are coloured according to the source with thicker lines indicating stronger signals.

netVisual_aggregate(cellchat, "TGFb", vertex.receiver = 1:9, # groups to show
                    vertex.size = group_size)

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.36 secs

8.1.2 Circle plot

We can show a similar thing as a circle plot.

netVisual_aggregate(cellchat, "ncWNT", layout = "circle",
                    vertex.size = group_size)

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.18 secs

8.2 Pathway contribution

Here we show the contribution of each interaction pair to a signalling pathway.

netAnalysis_contribution(cellchat, "TGFb")

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.3 secs

8.3 Signalling roles

For can look at the expected role for each cell type for a pathway based on the network analysis scores.

netVisual_signalingRole(cellchat, "TGFb", width = 16, height = 4,
                        font.size = 10)

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.38 secs

8.4 Communication patterns

8.4.1 River plot

An alternative way to visualise the communication patterns is using a river plot.

netAnalysis_river(cellchat, pattern = "outgoing")

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 1.26 secs

8.4.2 Dot plot

Another alternative is a dot plot.

netAnalysis_dot(cellchat, pattern = "outgoing")

Version Author Date
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.56 secs

8.5 Embedding

UMAP embedding of pathway similarity.

netVisual_embedding(cellchat, type = "functional", pathway.remove.show = FALSE,
                    label.size = 3.5)

Version Author Date
9940762 Luke Zappia 2020-09-24
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.57 secs

8.5.1 Zoom in

netVisual_embeddingZoomIn(cellchat, type = "functional", nCol = 2)

Version Author Date
9940762 Luke Zappia 2020-09-24
b6db7b4 Luke Zappia 2020-07-30

Chunk time: 0.59 secs

Summary

Parameters

This table describes parameters used and set in this document.

params <- list(
    
)
params <- toJSON(params, pretty = TRUE)
kable(fromJSON(params))

Chunk time: 0.01 secs

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

kable(data.frame(
    File = c(
        download_link("parameters.json", OUT_DIR)
    ),
    Description = c(
        "Parameters set and used in this analysis"
    )
))
File Description
parameters.json Parameters set and used in this analysis

Chunk time: 0.01 secs

Session information


sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.0 (2020-04-24)
 os       macOS Catalina 10.15.7      
 system   x86_64, darwin17.0          
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Europe/Berlin               
 date     2020-11-24                  

─ Packages ───────────────────────────────────────────────────────────────────
 ! package        * version date       lib
 P assertthat       0.2.1   2019-03-21 [?]
 P backports        1.1.6   2020-04-05 [?]
 P base64enc        0.1-3   2015-07-28 [?]
 P base64url        1.4     2018-05-14 [?]
   bibtex           0.4.2.2 2020-01-02 [1]
   Biobase        * 2.48.0  2020-04-27 [1]
   BiocGenerics   * 0.34.0  2020-04-27 [1]
 P broom            0.5.6   2020-04-20 [?]
 P CellChat       * 0.0.1   2020-07-29 [?]
 P cellranger       1.1.0   2016-07-27 [?]
 P circlize         0.4.9   2020-04-30 [?]
 P cli              2.0.2   2020-02-28 [?]
   clue             0.3-57  2019-02-25 [1]
 P cluster          2.1.0   2019-06-19 [?]
   coda             0.19-3  2019-07-05 [1]
 P codetools        0.2-18  2020-11-04 [?]
 P colorspace       1.4-1   2019-03-18 [?]
 P ComplexHeatmap   2.5.4   2020-07-29 [?]
 P conflicted     * 1.0.4   2019-06-21 [?]
 P cowplot          1.0.0   2019-07-11 [?]
 P crayon           1.3.4   2017-09-16 [?]
 P DBI              1.1.0   2019-12-15 [?]
 P dbplyr           1.4.3   2020-04-19 [?]
 P digest           0.6.25  2020-02-23 [?]
   doParallel       1.0.15  2019-08-02 [1]
 P dplyr          * 0.8.5   2020-03-07 [?]
 P drake            7.12.0  2020-03-25 [?]
 P ellipsis         0.3.0   2019-09-20 [?]
 P evaluate         0.14    2019-05-28 [?]
 P fansi            0.4.1   2020-01-08 [?]
 P farver           2.0.3   2020-01-16 [?]
 P filelock         1.0.2   2018-10-05 [?]
   FNN              1.1.3   2019-02-15 [1]
 P forcats        * 0.5.0   2020-03-01 [?]
   foreach          1.5.0   2020-03-30 [1]
 P fs             * 1.4.1   2020-04-04 [?]
 P future           1.17.0  2020-04-18 [?]
 P future.apply     1.5.0   2020-04-17 [?]
   gdtools          0.2.2   2020-04-03 [1]
 P generics         0.0.2   2018-11-29 [?]
 P GetoptLong       0.1.8   2020-01-08 [?]
   ggalluvial     * 0.12.0  2020-07-14 [1]
 P ggplot2        * 3.3.0   2020-03-05 [?]
   ggrepel          0.8.2   2020-03-08 [1]
 P git2r            0.27.1  2020-05-03 [?]
 P GlobalOptions    0.1.1   2019-09-30 [?]
   globals          0.12.5  2019-12-07 [1]
 P glue           * 1.4.0   2020-04-03 [?]
   gridBase         0.4-7   2014-02-24 [1]
 P gtable           0.3.0   2019-03-25 [?]
 P haven            2.2.0   2019-11-08 [?]
 P here           * 0.1     2017-05-28 [?]
 P highr            0.8     2019-03-20 [?]
 P hms              0.5.3   2020-01-08 [?]
 P htmltools        0.5.0   2020-06-16 [?]
 P httpuv           1.5.2   2019-09-11 [?]
 P httr             1.4.1   2019-08-05 [?]
 P igraph           1.2.5   2020-03-19 [?]
   IRanges          2.22.2  2020-05-21 [1]
   irlba            2.3.3   2019-02-05 [1]
   iterators        1.0.12  2019-07-26 [1]
 P jsonlite       * 1.6.1   2020-02-02 [?]
 P knitr          * 1.28    2020-02-06 [?]
 P labeling         0.3     2014-08-23 [?]
 P later            1.0.0   2019-10-04 [?]
 P lattice          0.20-41 2020-04-02 [?]
 P lifecycle        0.2.0   2020-03-06 [?]
   listenv          0.8.0   2019-12-05 [1]
 P lubridate        1.7.8   2020-04-06 [?]
 P magrittr         1.5     2014-11-22 [?]
 P Matrix           1.2-18  2019-11-27 [?]
 P memoise          1.1.0   2017-04-21 [?]
 P modelr           0.1.7   2020-04-30 [?]
 P munsell          0.5.0   2018-06-12 [?]
   network          1.16.0  2019-12-01 [1]
 P nlme             3.1-147 2020-04-13 [?]
   NMF              0.22.0  2020-02-12 [1]
 P pander         * 0.6.3   2018-11-06 [?]
   pbapply          1.4-2   2019-08-31 [1]
 P pillar           1.4.4   2020-05-05 [?]
 P pkgconfig        2.0.3   2019-09-22 [?]
   pkgmaker         0.31.1  2020-03-19 [1]
 P plyr             1.8.6   2020-03-03 [?]
   png              0.1-7   2013-12-03 [1]
 P prettyunits      1.1.1   2020-01-24 [?]
 P progress         1.2.2   2019-05-16 [?]
 P promises         1.1.0   2019-10-04 [?]
 P purrr          * 0.3.4   2020-04-17 [?]
 P R6               2.4.1   2019-11-12 [?]
 P RColorBrewer     1.1-2   2014-12-07 [?]
 P Rcpp             1.0.4.6 2020-04-09 [?]
 P readr          * 1.3.1   2018-12-21 [?]
 P readxl           1.3.1   2019-03-13 [?]
   registry         0.5-1   2019-03-05 [1]
 P renv             0.12.0  2020-08-28 [?]
 P repr             1.1.0   2020-01-28 [?]
 P reprex           0.3.0   2019-05-16 [?]
 P reshape2         1.4.4   2020-04-09 [?]
 P reticulate       1.16    2020-05-27 [?]
   rjson            0.2.20  2018-06-08 [1]
 P rlang            0.4.6   2020-05-02 [?]
 P rmarkdown        2.1     2020-01-20 [?]
   rngtools         1.5     2020-01-23 [1]
 P rprojroot        1.3-2   2018-01-03 [?]
   RSpectra         0.16-0  2019-12-01 [1]
 P rstudioapi       0.11    2020-02-07 [?]
 P rvest            0.3.5   2019-11-08 [?]
   S4Vectors        0.26.1  2020-05-16 [1]
 P scales           1.1.0   2019-11-18 [?]
 P sessioninfo      1.1.1   2018-11-05 [?]
 P shape            1.4.4   2018-02-07 [?]
 P skimr          * 2.1.1   2020-04-16 [?]
   sna              2.5     2019-12-10 [1]
   statnet.common   4.3.0   2019-06-02 [1]
 P storr            1.2.1   2018-10-18 [?]
 P stringi          1.4.6   2020-02-17 [?]
 P stringr        * 1.4.0   2019-02-10 [?]
   svglite          1.2.3.2 2020-07-07 [1]
   systemfonts      0.2.3   2020-06-09 [1]
 P tibble         * 3.0.1   2020-04-20 [?]
 P tidyr          * 1.0.3   2020-05-07 [?]
 P tidyselect       1.0.0   2020-01-27 [?]
 P tidyverse      * 1.3.0   2019-11-21 [?]
 P txtq             0.2.0   2019-10-15 [?]
 P vctrs            0.2.4   2020-03-10 [?]
 P whisker          0.4     2019-08-28 [?]
 P withr            2.2.0   2020-04-20 [?]
 P workflowr        1.6.2   2020-04-30 [?]
 P xfun             0.13    2020-04-13 [?]
 P xml2             1.3.2   2020-04-23 [?]
   xtable           1.8-4   2019-04-21 [1]
 P yaml             2.2.1   2020-02-01 [?]
 source                                  
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.4)                         
 CRAN (R 4.0.2)                          
 Bioconductor                            
 Bioconductor                            
 CRAN (R 4.0.0)                          
 Github (sqjin/CellChat@1df06c1)         
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.2)                          
 standard (@1.4-1)                       
 Github (jokergoo/ComplexHeatmap@d38254f)
 standard (@1.0.4)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.14)                        
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.1)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 standard (@0.0.2)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 standard (@0.3.0)                       
 standard (@2.2.0)                       
 standard (@0.1)                         
 standard (@0.8)                         
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 standard (@1.5.2)                       
 standard (@1.4.1)                       
 CRAN (R 4.0.0)                          
 Bioconductor                            
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.3)                         
 standard (@1.0.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.2-18)                      
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 standard (@0.5.0)                       
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.1-2)                       
 CRAN (R 4.0.0)                          
 standard (@1.3.1)                       
 standard (@1.3.1)                       
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 standard (@0.3.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@0.3.5)                       
 Bioconductor                            
 standard (@1.1.0)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.2)                          
 standard (@1.2.1)                       
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 standard (@1.3.0)                       
 standard (@0.2.0)                       
 CRAN (R 4.0.0)                          
 standard (@0.4)                         
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.0)                          
 CRAN (R 4.0.2)                          
 CRAN (R 4.0.0)                          

[1] /Users/luke.zappia/Documents/Projects/interaction-tools/renv/library/R-4.0/x86_64-apple-darwin17.0
[2] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpOqMPdA/renv-system-library
[3] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpqYMqtc/renv-system-library
[4] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/Rtmpdw6ROp/renv-system-library

 P ── Loaded and on-disk path mismatch.

Chunk time: 0.31 secs

LS0tCnRpdGxlOiAiQ2VsbENoYXQgZXhhbXBsZSIKb3V0cHV0OiB3b3JrZmxvd3I6OndmbG93X2h0bWwKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgpgYGB7ciBzZXR1cCwgY2FjaGUgPSBGQUxTRX0KIyBTZXR1cCBkb2N1bWVudApzb3VyY2UoaGVyZTo6aGVyZSgiY29kZSIsICJzZXR1cC5SIikpCgojIEZ1bmN0aW9uIGRlcGVuZGVuY2llcwppbnZpc2libGUoZHJha2U6OnJlYWRkKGRvd25sb2FkX2xpbmspKQpgYGAKCkludHJvZHVjdGlvbiB7LnVubnVtYmVyZWR9Cj09PT09PT09PT09PQoKSW4gdGhpcyBkb2N1bWVudCB3ZSBhcmUgZ29pbmcgdG8gcnVuIHRocm91Z2ggdGhlIGV4YW1wbGUgYW5hbHlzaXMgZm9yIHRoZQoqKkNlbGxDaGF0KiogcGFja2FnZSBhbmQgaGF2ZSBhIGxvb2sgYXQgdGhlIG91dHB1dCBpdCBwcm9kdWNlcy4gTW9yZSBpbmZvcm1hdGlvbgphYm91dCAqKkNlbGxDaGF0KiogY2FuIGJlIGZvdW5kIGF0IGh0dHBzOi8vZ2l0aHViLmNvbS9zcWppbi9DZWxsQ2hhdC4KCmBgYHtyIGxpYnJhcmllc30KbGlicmFyeSgiQ2VsbENoYXQiKQpsaWJyYXJ5KCJnZ2FsbHV2aWFsIikKYGBgCgpJbnB1dAo9PT09PQoKKipDZWxsQ2hhdCoqIHJlcXVpcmVzIHR3byB1c2VyIGlucHV0czogYW4gZXhwcmVzc2lvbiBtYXRyaXggYW5kIGVpdGhlciBjZWxsLXR5cGUKbGFiZWxzIG9yIGEgbG93LWRpbWVuc2lvbmFsIGVtYmVkZGluZy4gSGVyZSB3ZSB1c2UgdGhlIGxhYmVsLWJhc2VkIG1vZGUuIFRoZQpvdGhlciBpbnB1dHMgdG8gKipDZWxsQ2hhdCoqIGFyZSB0aGUgbGlnYW5kLXJlY2VwdG9yIGRhdGFiYXNlIGFuZApwcm90ZWluLXByb3RlaW4gaW50ZXJhY3Rpb24gbmV0d29yayBpbmNsdWRlZCBpbiB0aGUgcGFja2FnZS4KCmBgYHtyIGxvYWR9CmxvYWQoZnM6OnBhdGgoUEFUSFMkQ2VsbENoYXRfaW4sICJkYXRhX3dvdW5kX0NlbGxDaGF0LnJkYSIpKQpgYGAKCkV4cHJlc3Npb24gbWF0cml4Ci0tLS0tLS0tLS0tLS0tLS0tCgpUaGUgZXhwcmVzc2lvbiBtYXRyaXggc2hvdWxkIGJlIG5vcm1hbGlzZWQgd2l0aCBnZW5lcyBhcyByb3dzIGFuZCBjZWxscyBhcwpjb2x1bW5zLiBIZXJlIGlzIGEgc25pcHBldCBvZiB0aGUgZXhhbXBsZSBkYXRhc2V0OgoKYGBge3IgaW5wdXQtZXhwcn0KZXhwciA8LSBkYXRhX3dvdW5kJGRhdGEKCnBhbmRlcihhcy5tYXRyaXgoZXhwclsxOjUsIDE6NV0pKQpgYGAKClRoZSBmdWxsIG1hdHJpeCBoYXMgKipgciBucm93KGV4cHIpYCoqIHJvd3MgKGdlbmVzKSBhbmQgKipgciBuY29sKGV4cHIpYCoqCmNvbHVtbnMgKGNlbGxzKS4KCkxhYmVscwotLS0tLS0KClRoZSBzZWNvbmQgaW5wdXQgaXMgYSBgZGF0YS5mcmFtZWAgd2l0aCBjZWxsIHR5cGUgbGFiZWxzIGZvciBlYWNoIGNlbGwuCgpgYGB7ciBpbnB1dC1sYWJlbHN9CmxhYmVscyA8LSBkYXRhLmZyYW1lKAogICAgZ3JvdXAgICAgID0gZGF0YV93b3VuZCRsYWJlbHMsCiAgICByb3cubmFtZXMgPSBuYW1lcyhkYXRhX3dvdW5kJGxhYmVscykKKQpncm91cF9zaXplIDwtIGFzLm51bWVyaWModGFibGUobGFiZWxzJGdyb3VwKSkKCnNraW0obGFiZWxzKQpgYGAKCkRhdGFiYXNlCi0tLS0tLS0tCgpUaGUgZGF0YWJhc2UgaXMgYXZhaWxhYmxlIGFzIGEgbGlzdC4gVGhlIHR1dG9yaWFsIHN1Z2dlc3RzIHVzaW5nIG9ubHkgdGhlCmludGVyYWN0aW9ucyBhbm5vdGF0ZWQgd2l0aCAiU2VjcmV0ZWQgU2lnbmFsbGluZyIuCgpgYGB7ciBpbnB1dC1kYXRhYmFzZX0KQ2VsbENoYXREQiA8LSBDZWxsQ2hhdERCLm1vdXNlCkNlbGxDaGF0REIgPC0gc3Vic2V0REIoQ2VsbENoYXREQiwgc2VhcmNoID0gIlNlY3JldGVkIFNpZ25hbGluZyIpCmBgYAoKVGhlIGRhdGFiYXNlIGxpc3QgY29udGFpbnMgKipgciBsZW5ndGgoQ2VsbENoYXREQilgKiogaXRlbXM6IApgciBnbHVlX2NvbGxhcHNlKGdsdWUoIioqe25hbWVzKENlbGxDaGF0REIpfSoqIiksIHNlcCA9ICIsICIsIGxhc3QgPSAiIGFuZCAiKWAKCiMjIyBJbnRlcmFjdGlvbgoKVGhlIGZpcnN0IGl0ZW0gaW4gdGhlIGxpc3QgaXMgYSBgZGF0YS5mcmFtZWAgd2l0aCBpbmZvcm1hdGlvbiBhYm91dAppbnRlcmFjdGlvbnMuCgpgYGB7ciBpbnB1dC1kYXRhYmFzZS1pbnRlcmFjdGlvbn0Kc2tpbShDZWxsQ2hhdERCJGludGVyYWN0aW9uKQpgYGAKCiMjIyBDb21wbGV4CgpUaGUgc2Vjb25kIGl0ZW0gY29udGFpbiBpbmZvcm1hdGlvbiBhYm91dCBjb21wbGV4ZXMuCgpgYGB7ciBpbnB1dC1kYXRhYmFzZS1jb21wbGV4fQpza2ltKENlbGxDaGF0REIkY29tcGxleCkKYGBgCgojIyMgQ29mYWN0b3IKClRoZSBuZXh0IGl0ZW0gY29udGFpbnMgaW5mb3JtYXRpb24gYWJvdXQgY29mYWN0b3JzLgoKYGBge3IgaW5wdXQtZGF0YWJhc2UtY29mYWN0b3J9CnNraW0oQ2VsbENoYXREQiRjb2ZhY3RvcikKYGBgCgojIyMgR2VuZSBpbmZvCgpUaGUgZmluYWwgaXRlbSBpbiB0aGUgZGF0YWJhc2UgaXMgZ2VuZSBhbm5vdGF0aW9uIGluZm9ybWF0aW9uLgoKYGBge3IgaW5wdXQtZGF0YWJhc2UtZ2VuZWluZm99CnNraW0oQ2VsbENoYXREQiRnZW5lSW5mbykKYGBgCgpOZXR3b3JrCi0tLS0tLS0KClRoZSBuZXR3b3JrIGlzIGEgYmluYXJ5IG1hdHJpeCBzaG93aW5nIGludGVyYWN0aW9ucyBiZXR3ZWVuIHByb3RlaW5zLgoKYGBge3IgaW5wdXQtbmV0d29ya30KcGFuZGVyKGFzLm1hdHJpeChQUEkubW91c2VbMTo1LCAxOjVdKSkKYGBgCgpUaGUgZnVsbCBtYXRyaXggaGFzICoqYHIgbnJvdyhQUEkubW91c2UpYCoqIHJvd3MgYW5kICoqYHIgbmNvbChQUEkubW91c2UpYCoqCmNvbHVtbnMuCgpDcmVhdGUgYENlbGxDaGF0YCBvYmplY3QKPT09PT09PT09PT09PT09PT09PT09PT09CgoqKkNlbGxDaGF0KiogdXNlcyBhIGN1c3RvbSBvYmplY3Qgd2hpY2ggd2UgY2FuIGNyZWF0ZSBmcm9tIHRoZSBleHByZXNzaW9uIG1hdHJpeAphbmQgbGFiZWxzLiBXZSBhbHNvIHN0b3JlIHRoZSBkYXRhYmFzZSBoZXJlLgoKYGBge3Igb2JqZWN0fQpjZWxsY2hhdCA8LSBjcmVhdGVDZWxsQ2hhdChleHByKQpjZWxsY2hhdCA8LSBhZGRNZXRhKGNlbGxjaGF0LCBtZXRhID0gbGFiZWxzLCBtZXRhLm5hbWUgPSAibGFiZWxzIikKY2VsbGNoYXQgPC0gc2V0SWRlbnQoY2VsbGNoYXQsIGlkZW50LnVzZSA9ICJsYWJlbHMiKQpjZWxsY2hhdEBEQiA8LSBDZWxsQ2hhdERCCgpjZWxsY2hhdApgYGAKClByZS1wcm9jZXNzaW5nCj09PT09PT09PT09PT09CgpTdWJzZXQgc2lnbmFsbGluZyBnZW5lcwotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKRmlyc3Qgd2Ugc3Vic2V0IHRoZSBvYmplY3QgdG8gc2VsZWN0IG9ubHkgdGhlIHNpZ25hbGxpbmcgZ2VuZXMgdGhhdCBhcmUgbGlzdGVkCmluIHRoZSBkYXRhYmFzZS4KCmBgYHtyIHByZS1zdWJzZXR9CmNlbGxjaGF0IDwtIHN1YnNldERhdGEoY2VsbGNoYXQpCgpjZWxsY2hhdApgYGAKCklkZW50aWZ5IG92ZXItZXhwcmVzc2lvbgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClRoZSBuZXh0IHN0ZXAgaXMgdG8gaWRlbnRpZnkgb3Zlci1leHByZXNzZWQgZ2VuZXMgYW5kIGludGVyYWN0aW9ucy4KT3Zlci1leHByZXNzZWQgZ2VuZXMgYXJlIGRldGVjdGVkIHVzaW5nIGEgb25lLXNpZGVkIFdpbGNveG9uIHRlc3QuIEludGVyYWN0aW9ucwphcmUgc2VsZWN0ZWQgaWYgZWl0aGVyIGEgbGlnYW5kIG9yIHJlY2VwdG9yIGlzIG92ZXItZXhwcmVzc2VkLgoKYGBge3IgcHJlLW92ZXJ9CmNlbGxjaGF0IDwtIGlkZW50aWZ5T3ZlckV4cHJlc3NlZEdlbmVzKGNlbGxjaGF0KQpjZWxsY2hhdCA8LSBpZGVudGlmeU92ZXJFeHByZXNzZWRJbnRlcmFjdGlvbnMoY2VsbGNoYXQpCmBgYAoKVGhpcyBzdGVwIGhhcyBpZGVudGlmaWVkICoqYHIgbGVuZ3RoKGNlbGxjaGF0QHZhci5mZWF0dXJlcylgKiogZ2VuZXMgYW5kCioqYHIgbnJvdyhjZWxsY2hhdEBMUiRMUnNpZylgKiogaW50ZXJhY3Rpb25zLgoKUHJvamVjdCBkYXRhCi0tLS0tLS0tLS0tLQoKVGhlIGdlbmUgZXhwcmVzc2lvbiBkYXRhIGlzIHRoZW4gcHJvamVjdGVkIG9udG8gYSBwcm90ZWluLXByb3RlaW4gaW50ZXJhY3Rpb24KbmV0d29yay4KCmBgYHtyIHByZS1wcm9qZWN0fQpjZWxsY2hhdCA8LSBwcm9qZWN0RGF0YShjZWxsY2hhdCwgUFBJLm1vdXNlKQpgYGAKCkNvbW11bmljYXRpb24gbmV0d29yayBpbmZlcmVuY2UKPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PQoKQ29tcHV0ZSBjb21tdW5pY2F0aW9uIHByb2JhYmlsaXR5Ci0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKQXQgdGhpcyBzdGFnZSB3ZSBjYW4gbm93IGNvbXB1dGUgdGhlIGNvbW11bmljYXRpb24gcHJvYmFiaWxpdHkgYW5kIGluZmVyIHRoZQpjb21tdW5pY2F0aW9uIG5ldHdvcmsuIFRoZSByZXN1bHRzIGFyZSBzdG9yZWQgaW4gdGhlIGBuZXRgIHNsb3Qgb2YgdGhlCmBDZWxsQ2hhdGAgb2JqZWN0IHdoaWNoIGNvbnRhaW5zIHRocmVlLWRpbWVuc2lvbmFsIGFycmF5cyBvZiBwcm9iYWJpbGl0aWVzIGFuZApwLXZhbHVlcyBmb3IgaW50ZXJhY3Rpb25zIGJldHdlZW4gZWFjaCBwYWlyIG9mIGNlbGwgdHlwZXMgZm9yIGVhY2ggaW50ZXJhY3Rpb24KcGFpci4gSGVyZSBhcmUgc25pcHBldHMgb2YgdGhlc2UgYXJyYXlzIGZvciB0aGUgZmlyc3QgaW50ZXJhY3Rpb24gcGFpci4KCmBgYHtyIGluZmVyLXByb2JhYmlsaXR5fQpjZWxsY2hhdCA8LSBjb21wdXRlQ29tbXVuUHJvYihjZWxsY2hhdCkKCnBhbmRlcihjZWxsY2hhdEBuZXQkcHJvYlsxOjUsIDE6NSwgMV0pCnBhbmRlcihjZWxsY2hhdEBuZXQkcHZhbFsxOjUsIDE6NSwgMV0pCmBgYAoKSW5mZXIgcGF0aHdheSBzaWduYWxsaW5nCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKV2UgYWxzbyBjb21wdXRlIHRoZSBjb21tdW5pY2F0aW9uIHByb2JhYmlsaXRpZXMgYXQgdGhlIHBhdGh3YXkgbGV2ZWwgYnkKc3VtbWFyaXNpbmcgYWxsIGxpZ2FuZC1yZWNlcHRvciBpbnRlcmFjdGlvbnMgYXNzb2NpYXRlZCB3aXRoIGVhY2ggcGF0aHdheS4gVGhlCm91dHB1dCBpcyBzaW1pbGFyIGJ1dCBub3cgaW5zdGVhZCBvZiBpbnRlcmFjdGlvbiBwYWlycyB3ZSBoYXZlIHBhdGh3YXlzLgoKYGBge3IgaW5mZXItcGF0aHdheX0KY2VsbGNoYXQgPC0gY29tcHV0ZUNvbW11blByb2JQYXRod2F5KGNlbGxjaGF0KQoKcGFuZGVyKGNlbGxjaGF0QG5ldFAkcHJvYlsxOjUsIDE6NSwgMV0pCmBgYAoKQWdncmVnYXRlIG5ldHdvcmsKLS0tLS0tLS0tLS0tLS0tLS0KCldlIGNhbiBnZXQgYW4gYWdncmVnYXRlZCBjb21tdW5pY2F0aW9uIG5ldHdvcmsgYnkgY291bnRpbmcgdGhlIG51bWJlciBvZiBsaW5rcwpiZXR3ZWVuIGNlbGwgdHlwZXMgb3Igc3VtbWFyaXNpbmcgdGhlIGNvbW11bmljYXRpb24gcHJvYmFiaWxpdGllcy4gVGhlc2UgcmVzdWx0cwphcmUgc3RvcmVkIGFzIHR3by1kaW1lbnNpb25hbCBtYXRyaWNlcy4KCmBgYHtyIGluZmVyLWFnZ3JlZ2F0ZX0KY2VsbGNoYXQgPC0gYWdncmVnYXRlTmV0KGNlbGxjaGF0KQoKcGFuZGVyKGNlbGxjaGF0QG5ldCRjb3VudFsxOjUsIDE6NV0pCnBhbmRlcihjZWxsY2hhdEBuZXQkc3VtWzE6NSwgMTo1XSkKYGBgCgpOZXR3b3JrIGFuYWx5c2lzCj09PT09PT09PT09PT09PT0KCioqQ2VsbENoYXQqKiBjYW4gcGVyZm9ybSBhbmFseXNpcyBvbiB0aGUgY29tbXVuaWNhdGlvbiBuZXR3b3JrIHRvIGJldHRlcgp1bmRlcnN0YW5kIHRoZSByb2xlcyBvZiBlYWNoIGNlbGwgdHlwZS4gSGVyZSB3ZSBwZXJmb3JtIHRoYXQgYW5hbHlzaXMgdXNpbmcgdGhlCnBhdGh3YXkgc2NvcmVzLiBUaGUgb3V0cHV0IGlzIGEgbGlzdCB3aXRoIGEgc2V0IG9mIG1ldHJpY3MgZm9yIGNlbGwgdHlwZSBmb3IKZWFjaCBwYXRod2F5LgoKYGBge3IgbmV0d29yay1hbmFseXNpc30KY2VsbGNoYXQgPC0gbmV0QW5hbHlzaXNfc2lnbmFsaW5nUm9sZShjZWxsY2hhdCwgc2xvdC5uYW1lID0gIm5ldFAiKQpgYGAKClRoZSBuZXR3b3JrIG1ldHJpY3MgYXJlOgpgciBnbHVlX2NvbGxhcHNlKGdsdWUoIioqe25hbWVzKGNlbGxjaGF0QG5ldFAkY2VudHJbWzFdXSl9KioiKSwgc2VwID0gIiwgIiwgbGFzdCA9ICIgYW5kICIpYAoKR2xvYmFsIHBhdHRlcm5zCj09PT09PT09PT09PT09PQoKSXQgbWF5IGFsc28gYmUgaW50ZXJlc3RpbmcgdG8gaWRlbnRpZnkgY29tbW9uIGNvbW11bmljYXRpb24gcGF0dGVybnMuIFdlIGNhbiBkbwp0aGlzIGZvciBib3RoIG91dGdvaW5nIGFuZCBpbmNvbWluZyBwYXR0ZXJucy4KCmBgYHtyIHBhdHRlcm5zfQpjZWxsY2hhdCA8LSBpZGVudGlmeUNvbW11bmljYXRpb25QYXR0ZXJucyhjZWxsY2hhdCwgcGF0dGVybiA9ICJvdXRnb2luZyIsIGsgPSA1KQpjZWxsY2hhdCA8LSBpZGVudGlmeUNvbW11bmljYXRpb25QYXR0ZXJucyhjZWxsY2hhdCwgcGF0dGVybiA9ICJpbmNvbWluZyIsIGsgPSA1KQpgYGAKCk1hbmlmb2xkIGxlYXJuaW5nIGFuZCBjbGFzc2lmaWNhdGlvbgo9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT0KCioqQ2VsbENoYXQqKiBjYW4gaWRlbnRpZnkgZ3JvdXBzIG9mIHNpZ25hbGxpbmcgcGF0aHdheXMgYnkgZW1iZWRkaW5nIGFuZApjbHVzdGVyaW5nIHRoZW0uCgpGdW5jdGlvbmFsIHNpbWlsYXJpdHkKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKRnVuY3Rpb25hbCBzaW1pbGFyaXR5IGluZGljYXRlcyB0aGF0IG1ham9yIHNlbmRlcnMgYW5kIHJlY2VpdmVycyBhcmUgc2ltaWxhcgphbmQgY2FuIGJlIGludGVycHJldGVkIGFzIHRoZSB0d28gcGF0aHdheXMgb3IgaW50ZXJhY3Rpb24gcGFpcnMgZXhoaWJpdGluZwpzaW1pbGFyIGFuZC9vciByZWR1bmRhbnQgcm9sZXMuIAoKVGhlIG91dHB1dCBpcyBhIHNpbWlsYXJpdHkgbWF0cml4LCBVTUFQIGVtYmVkZGluZyBhbmQgY2x1c3RlciBhc3NpZ25tZW50cyBmcm9tCiRrJC1tZWFucy4KCmBgYHtyIG1hbmlmb2xkLWZ1bmN0aW9uYWx9CmNlbGxjaGF0IDwtIGNvbXB1dGVOZXRTaW1pbGFyaXR5KGNlbGxjaGF0LCB0eXBlID0gImZ1bmN0aW9uYWwiLCB0aHJlc2ggPSAwLjI1KQpjZWxsY2hhdCA8LSBuZXRFbWJlZGRpbmcoY2VsbGNoYXQsIHR5cGUgPSAiZnVuY3Rpb25hbCIpCmNlbGxjaGF0IDwtIG5ldENsdXN0ZXJpbmcoY2VsbGNoYXQsIHR5cGUgPSAiZnVuY3Rpb25hbCIsIGsgPSA0KQoKcGFuZGVyKGNlbGxjaGF0QG5ldFAkc2ltaWxhcml0eSRmdW5jdGlvbmFsJG1hdHJpeFsxOjUsMTo1XSkKcGFuZGVyKGNlbGxjaGF0QG5ldFAkc2ltaWxhcml0eSRmdW5jdGlvbmFsJGRyWzE6NSwgXSkKY2VsbGNoYXRAbmV0UCRzaW1pbGFyaXR5JGZ1bmN0aW9uYWwkZ3JvdXAKYGBgCgpTdHJ1Y3R1cmFsIHNpbWlsYXJpdHkKLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgpTdHJ1Y3R1cmFsIHNpbWlsYXJpdHkgaXMgdXNlZCB0byBjb21wYXJlIHRoZSBzaWduYWxsaW5nIG5ldHdvcmsgc3RydWN0dXJlLAp3aXRob3V0IGNvbnNpZGVyaW5nIHRoZSBzaW1pbGFyaXR5IG9mIHNlbmRlcnMgYW5kIHJlY2VpdmVycy4KCmBgYHtyIG1hbmlmb2xkLXN0cnVjdHVyYWx9CmNlbGxjaGF0IDwtIGNvbXB1dGVOZXRTaW1pbGFyaXR5KGNlbGxjaGF0LCB0eXBlID0gInN0cnVjdHVyYWwiLCB0aHJlc2ggPSAwLjI1KQpjZWxsY2hhdCA8LSBuZXRFbWJlZGRpbmcoY2VsbGNoYXQsIHR5cGUgPSAic3RydWN0dXJhbCIpCmNlbGxjaGF0IDwtIG5ldENsdXN0ZXJpbmcoY2VsbGNoYXQsIHR5cGUgPSAic3RydWN0dXJhbCIsIGsgPSA0KQoKcGFuZGVyKGNlbGxjaGF0QG5ldFAkc2ltaWxhcml0eSRzdHJ1Y3R1cmFsJG1hdHJpeFsxOjUsMTo1XSkKcGFuZGVyKGNlbGxjaGF0QG5ldFAkc2ltaWxhcml0eSRzdHJ1Y3R1cmFsJGRyWzE6NSwgXSkKY2VsbGNoYXRAbmV0UCRzaW1pbGFyaXR5JHN0cnVjdHVyYWwkZ3JvdXAKYGBgCgpWaXN1YWxpc2F0aW9uCj09PT09PT09PT09PT0KClNpZ25hbGxpbmcgcGF0aHdheXMKLS0tLS0tLS0tLS0tLS0tLS0tLQoKIyMjIEhpZXJhcmNoeSBwbG90CgpIZXJlIHNvbGlkIGNpcmNsZXMgYXJlIHNvdXJjZXMgYW5kIG9wZW4gY2lyY2xlcyBhcmUgdGFyZ2V0cy4gQ2lyY2xlIHNpemVzIGFyZQp0aGUgbnVtYmVyIG9mIGNlbGxzIGluIGVhY2ggZ3JvdXAgYW5kIGxpbmVzIGFyZSBjb2xvdXJlZCBhY2NvcmRpbmcgdG8gdGhlIHNvdXJjZQp3aXRoIHRoaWNrZXIgbGluZXMgaW5kaWNhdGluZyBzdHJvbmdlciBzaWduYWxzLgoKYGBge3IgdmlzLXBhdGh3YXktaGllcmFyY2h5fQpuZXRWaXN1YWxfYWdncmVnYXRlKGNlbGxjaGF0LCAiVEdGYiIsIHZlcnRleC5yZWNlaXZlciA9IDE6OSwgIyBncm91cHMgdG8gc2hvdwogICAgICAgICAgICAgICAgICAgIHZlcnRleC5zaXplID0gZ3JvdXBfc2l6ZSkKYGBgCgojIyMgQ2lyY2xlIHBsb3QKCldlIGNhbiBzaG93IGEgc2ltaWxhciB0aGluZyBhcyBhIGNpcmNsZSBwbG90LgoKYGBge3IgdmlzLXBhdGh3YXktY2lyY2xlfQpuZXRWaXN1YWxfYWdncmVnYXRlKGNlbGxjaGF0LCAibmNXTlQiLCBsYXlvdXQgPSAiY2lyY2xlIiwKICAgICAgICAgICAgICAgICAgICB2ZXJ0ZXguc2l6ZSA9IGdyb3VwX3NpemUpCmBgYAoKUGF0aHdheSBjb250cmlidXRpb24KLS0tLS0tLS0tLS0tLS0tLS0tLS0KCkhlcmUgd2Ugc2hvdyB0aGUgY29udHJpYnV0aW9uIG9mIGVhY2ggaW50ZXJhY3Rpb24gcGFpciB0byBhIHNpZ25hbGxpbmcgcGF0aHdheS4KCmBgYHtyIHZpcy1jb250cmlidXRpb259Cm5ldEFuYWx5c2lzX2NvbnRyaWJ1dGlvbihjZWxsY2hhdCwgIlRHRmIiKQpgYGAKClNpZ25hbGxpbmcgcm9sZXMKLS0tLS0tLS0tLS0tLS0tLQoKRm9yIGNhbiBsb29rIGF0IHRoZSBleHBlY3RlZCByb2xlIGZvciBlYWNoIGNlbGwgdHlwZSBmb3IgYSBwYXRod2F5IGJhc2VkIG9uIHRoZQpuZXR3b3JrIGFuYWx5c2lzIHNjb3Jlcy4KCmBgYHtyIHZpcy1yb2xlc30KbmV0VmlzdWFsX3NpZ25hbGluZ1JvbGUoY2VsbGNoYXQsICJUR0ZiIiwgd2lkdGggPSAxNiwgaGVpZ2h0ID0gNCwKICAgICAgICAgICAgICAgICAgICAgICAgZm9udC5zaXplID0gMTApCmBgYAoKQ29tbXVuaWNhdGlvbiBwYXR0ZXJucwotLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgojIyMgUml2ZXIgcGxvdAoKQW4gYWx0ZXJuYXRpdmUgd2F5IHRvIHZpc3VhbGlzZSB0aGUgY29tbXVuaWNhdGlvbiBwYXR0ZXJucyBpcyB1c2luZyBhIHJpdmVyCnBsb3QuCgpgYGB7ciB2aXMtcGF0dGVybnMtcml2ZXJ9Cm5ldEFuYWx5c2lzX3JpdmVyKGNlbGxjaGF0LCBwYXR0ZXJuID0gIm91dGdvaW5nIikKYGBgCgojIyMgRG90IHBsb3QKCkFub3RoZXIgYWx0ZXJuYXRpdmUgaXMgYSBkb3QgcGxvdC4KCmBgYHtyIHZpcy1wYXR0ZXJucy1kb3R9Cm5ldEFuYWx5c2lzX2RvdChjZWxsY2hhdCwgcGF0dGVybiA9ICJvdXRnb2luZyIpCmBgYAoKRW1iZWRkaW5nCi0tLS0tLS0tLQoKVU1BUCBlbWJlZGRpbmcgb2YgcGF0aHdheSBzaW1pbGFyaXR5LgoKYGBge3IgdW1hcH0KbmV0VmlzdWFsX2VtYmVkZGluZyhjZWxsY2hhdCwgdHlwZSA9ICJmdW5jdGlvbmFsIiwgcGF0aHdheS5yZW1vdmUuc2hvdyA9IEZBTFNFLAogICAgICAgICAgICAgICAgICAgIGxhYmVsLnNpemUgPSAzLjUpCmBgYAoKIyMjIFpvb20gaW4KCmBgYHtyIHVtYXAtem9vbX0KbmV0VmlzdWFsX2VtYmVkZGluZ1pvb21JbihjZWxsY2hhdCwgdHlwZSA9ICJmdW5jdGlvbmFsIiwgbkNvbCA9IDIpCmBgYAoKClN1bW1hcnkgey51bm51bWJlcmVkfQo9PT09PT09CgpQYXJhbWV0ZXJzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLQoKVGhpcyB0YWJsZSBkZXNjcmliZXMgcGFyYW1ldGVycyB1c2VkIGFuZCBzZXQgaW4gdGhpcyBkb2N1bWVudC4KCmBgYHtyIHBhcmFtZXRlcnN9CnBhcmFtcyA8LSBsaXN0KAogICAgCikKcGFyYW1zIDwtIHRvSlNPTihwYXJhbXMsIHByZXR0eSA9IFRSVUUpCmthYmxlKGZyb21KU09OKHBhcmFtcykpCmBgYAoKT3V0cHV0IGZpbGVzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLS0tCgpUaGlzIHRhYmxlIGRlc2NyaWJlcyB0aGUgb3V0cHV0IGZpbGVzIHByb2R1Y2VkIGJ5IHRoaXMgZG9jdW1lbnQuIFJpZ2h0IGNsaWNrCmFuZCBfU2F2ZSBMaW5rIEFzLi4uXyB0byBkb3dubG9hZCB0aGUgcmVzdWx0cy4KCmBgYHtyIG91dHB1dH0Ka2FibGUoZGF0YS5mcmFtZSgKICAgIEZpbGUgPSBjKAogICAgICAgIGRvd25sb2FkX2xpbmsoInBhcmFtZXRlcnMuanNvbiIsIE9VVF9ESVIpCiAgICApLAogICAgRGVzY3JpcHRpb24gPSBjKAogICAgICAgICJQYXJhbWV0ZXJzIHNldCBhbmQgdXNlZCBpbiB0aGlzIGFuYWx5c2lzIgogICAgKQopKQpgYGAKClNlc3Npb24gaW5mb3JtYXRpb24gey51bm51bWJlcmVkfQotLS0tLS0tLS0tLS0tLS0tLS0tCg==