Last updated: 2020-11-24

Checks: 7 0

Knit directory: interaction-tools/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191213) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0333fe3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .drake/
    Ignored:    data/COMUNET/
    Ignored:    data/CellChat/
    Ignored:    data/ICELLNET/
    Ignored:    data/NicheNet/
    Ignored:    data/cellphonedb/
    Ignored:    data/celltalker/
    Ignored:    output/14-CellChat.Rmd/
    Ignored:    output/15-talklr.Rmd/
    Ignored:    output/16-CiteFuse.Rmd/
    Ignored:    output/17-scTHI.Rmd/
    Ignored:    output/18-celltalker.Rmd/
    Ignored:    output/index.Rmd/
    Ignored:    renv/library/
    Ignored:    renv/python/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   _drake.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/15-talklr.Rmd) and HTML (docs/15-talklr.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9940762 Luke Zappia 2020-09-24 Add talklr to drake
Rmd c67cf07 Luke Zappia 2020-09-24 Add talklr example
html c67cf07 Luke Zappia 2020-09-24 Add talklr example
Rmd d6b5957 Luke Zappia 2020-09-24 Set up talklr document
html d6b5957 Luke Zappia 2020-09-24 Set up talklr document

# Setup document
source(here::here("code", "setup.R"))

# Function dependencies
invisible(drake::readd(download_link))

Introduction

In this document we are going to run through the example analysis for the talklr package and have a look at the output it produces. More information about talklr can be found at https://github.com/yuliangwang/talklr.

library("talklr")
library("dplyr")

Chunk time: 0.09 secs

1 Input

1.1 Mean expression

The main input to talklr is a data.frame with mean expression values for each cell type. These should be normalised for sequencing depth but not gene length and must not be log-transformed.

expr <- read.table(
    system.file(
        "extdata", "glom_normal_data.txt",
        package = "talklr"
    ),
    header = TRUE,
    sep    = "\t"
)

skim(expr)
Data summary
Name expr
Number of rows 49947
Number of columns 4
_______________________
Column type frequency:
character 1
numeric 3
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
genes 0 1 0 16 1753 48037 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
podo 0 1 19.93 1288.81 0 0 0.01 2.79 226195.4 ▇▁▁▁▁
mesa 0 1 19.91 1176.52 0 0 0.10 3.86 203422.4 ▇▁▁▁▁
endo 0 1 19.92 1399.89 0 0 0.11 3.21 238898.1 ▇▁▁▁▁

Chunk time: 0.32 secs

There is also a second example dataset from another condition.

expr_fsgs <- read.table(
    system.file(
        "extdata", "glom_fsgs_data.txt",
        package = "talklr"
    ),
    header = TRUE,
    sep    = "\t"
)

skim(expr_fsgs)
Data summary
Name expr_fsgs
Number of rows 49947
Number of columns 4
_______________________
Column type frequency:
character 1
numeric 3
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
genes 0 1 0 16 1753 48037 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
podo 0 1 19.95 1695.24 0 0 0.03 2.63 308256.7 ▇▁▁▁▁
mesa 0 1 19.93 1569.87 0 0 0.15 3.01 272528.5 ▇▁▁▁▁
endo 0 1 19.92 1497.73 0 0 0.10 3.22 235597.0 ▇▁▁▁▁

Chunk time: 0.34 secs

1.2 Database

A ligand-receptor database is included as part of the talklr package. This is used automatically during the analysis.

skim(talklr::receptor_ligand)
Data summary
Name talklr::receptor_ligand
Number of rows 2422
Number of columns 16
_______________________
Column type frequency:
character 16
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Pair.Name 0 1.00 5 18 0 2422 0
Ligand.ApprovedSymbol 0 1.00 2 9 0 695 0
Ligand.Name 0 1.00 5 139 0 695 0
Receptor.ApprovedSymbol 0 1.00 2 9 0 652 0
Receptor.Name 0 1.00 7 101 0 652 0
DLRP 1957 0.19 4 4 0 1 0
HPMR 1596 0.34 4 4 0 1 0
IUPHAR 2067 0.15 6 6 0 1 0
HPRD 1154 0.52 4 4 0 1 0
STRING.binding 1113 0.54 14 14 0 1 0
STRING.experiment 2003 0.17 17 17 0 1 0
HPMR.Ligand 567 0.77 2 8 0 458 0
HPMR.Receptor 310 0.87 2 9 0 505 0
PMID.Manual 2149 0.11 6 18 0 185 0
Pair.Source 0 1.00 5 5 0 2 0
Pair.Evidence 0 1.00 8 20 0 2 0

Chunk time: 0.28 secs

2 Single condition

2.1 Build network

The first step in a talklr analysis is to construct a network of ligand-receptor interactions and prioritise them using Kullback-Leibler divergence. The output is a data.frame with the ligand-receptor pairs, their expression in different cell types and the KL score.

lr_net <- make_expressed_net(
    expr,
    expressed_thresh = 4,
    receptor_ligand,
    KL_method = "product",
    pseudo_count = 1
)
lr_net <- arrange(lr_net, desc(KL))

skim(lr_net)
Data summary
Name lr_net
Number of rows 652
Number of columns 23
_______________________
Column type frequency:
character 16
numeric 7
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Pair.Name 0 1.00 7 17 0 652 0
Ligand.ApprovedSymbol 0 1.00 2 8 0 199 0
Ligand.Name 0 1.00 5 112 0 199 0
Receptor.ApprovedSymbol 0 1.00 2 9 0 197 0
Receptor.Name 0 1.00 7 92 0 197 0
DLRP 534 0.18 4 4 0 1 0
HPMR 457 0.30 4 4 0 1 0
IUPHAR 620 0.05 6 6 0 1 0
HPRD 335 0.49 4 4 0 1 0
STRING.binding 255 0.61 14 14 0 1 0
STRING.experiment 536 0.18 17 17 0 1 0
HPMR.Ligand 159 0.76 2 8 0 137 0
HPMR.Receptor 67 0.90 2 9 0 164 0
PMID.Manual 568 0.13 7 18 0 70 0
Pair.Source 0 1.00 5 5 0 2 0
Pair.Evidence 0 1.00 8 20 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ligand_podo 0 1 110.11 324.72 1.00 2.76 6.39 61.24 1806.63 ▇▁▁▁▁
ligand_mesa 0 1 139.25 642.01 1.02 5.54 22.80 69.78 10226.73 ▇▁▁▁▁
ligand_endo 0 1 100.74 759.82 1.00 2.76 13.21 52.53 13475.95 ▇▁▁▁▁
receptor_podo 0 1 130.63 306.47 1.00 3.04 12.03 92.05 2099.77 ▇▁▁▁▁
receptor_mesa 0 1 151.43 283.86 1.00 8.65 32.30 151.70 1971.31 ▇▁▁▁▁
receptor_endo 0 1 120.88 218.35 1.00 3.58 20.48 105.59 1202.78 ▇▁▁▁▁
KL 0 1 1.29 0.61 0.01 0.81 1.29 1.72 2.90 ▃▇▇▅▁

Chunk time: 0.21 secs

2.2 Visualise pairs

We can then visualise individual ligand-receptor pair interactions between cell types. Here are examples for the top two pairs.

plot_lr_wiring(
    ligand_exprs   = as.numeric(lr_net[1, 17:19]),
    receptor_exprs = as.numeric(lr_net[1, 20:22]),
    cell_labels    = c("podo","mesa","endo"),
    thresh         = 0
)

Version Author Date
c67cf07 Luke Zappia 2020-09-24
plot_lr_wiring(
    ligand_exprs   = as.numeric(lr_net[2, 17:19]),
    receptor_exprs = as.numeric(lr_net[2, 20:22]),
    cell_labels    = c("podo","mesa","endo"),
    thresh         = 0
)

Version Author Date
c67cf07 Luke Zappia 2020-09-24

Chunk time: 0.27 secs

2.3 DEG method

Testing for differential expression can be used to select those pairs where both the ligand and receptor are “marker” genes for a cell type.

lr_net_deg <- make_deg_net(
    expr,
    lr_net,
    fc_thresh    = 3,
    pseudo_count = 1
)

Chunk time: 0.07 secs

There are 198 pairs selected using this method.

3 Two conditions

There is another mode in talklr that lets us compare between conditions.

3.1 Gene selection

First we select genes that are expressed in at least one cell type in at least one of the conditions. We set a threshold of at least 4 in at least 1 cell type.

expressed_norm <- rowSums(expr[, 2:ncol(expr)] > 4) >= 1
expressed_fsgs <- rowSums(expr_fsgs[, 2:ncol(expr_fsgs)] > 4) >= 1
expressed_genes <- expr$genes[expressed_norm | expressed_fsgs]

Chunk time: 0.01 secs

3.2 Build networks

We then build a network for each condition.

norm_net <- make_expressed_net_specify_expressed_genes(
    expr,
    expressed_genes,
    receptor_ligand,
    KL_method = "product"
)

fsgs_net <- make_expressed_net_specify_expressed_genes(
    expr_fsgs,
    expressed_genes,
    receptor_ligand,
    KL_method = "product"
)

Chunk time: 0.07 secs

3.3 Compare conditions

Once we have the two conditions we can compare them to look at the differences. The result from this is similar to what we get for a single condition but with an extra column scoring the difference.

norm_net$fsgs_vs_norm_KL <- disease_vs_normal_KL(
    fsgs_net[, 17:19],
    fsgs_net[, 20:22],
    norm_net[, 17:19],
    norm_net[, 20:22],
    pseudo_count = 1,
    method = "product"
)

perturbed_net <- arrange(norm_net, desc(fsgs_vs_norm_KL))

skim(perturbed_net)
Data summary
Name perturbed_net
Number of rows 722
Number of columns 24
_______________________
Column type frequency:
character 16
numeric 8
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Pair.Name 0 1.00 7 17 0 722 0
Ligand.ApprovedSymbol 0 1.00 2 8 0 215 0
Ligand.Name 0 1.00 5 112 0 215 0
Receptor.ApprovedSymbol 0 1.00 2 9 0 208 0
Receptor.Name 0 1.00 7 92 0 208 0
DLRP 595 0.18 4 4 0 1 0
HPMR 505 0.30 4 4 0 1 0
IUPHAR 689 0.05 6 6 0 1 0
HPRD 372 0.48 4 4 0 1 0
STRING.binding 280 0.61 14 14 0 1 0
STRING.experiment 600 0.17 17 17 0 1 0
HPMR.Ligand 172 0.76 2 8 0 148 0
HPMR.Receptor 71 0.90 2 9 0 174 0
PMID.Manual 628 0.13 7 18 0 79 0
Pair.Source 0 1.00 5 5 0 2 0
Pair.Evidence 0 1.00 8 20 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ligand_podo 0 1 103.22 314.37 0.00 1.45 4.79 51.30 1805.63 ▇▁▁▁▁
ligand_mesa 0 1 131.91 622.02 0.02 3.30 18.80 64.58 10225.73 ▇▁▁▁▁
ligand_endo 0 1 96.06 730.41 0.00 1.72 9.95 41.85 13474.95 ▇▁▁▁▁
receptor_podo 0 1 124.31 299.07 0.00 1.83 10.76 80.65 2098.77 ▇▁▁▁▁
receptor_mesa 0 1 145.25 284.35 0.00 5.14 26.34 150.70 1970.31 ▇▁▁▁▁
receptor_endo 0 1 114.67 216.12 0.00 2.43 15.85 99.10 1201.78 ▇▁▁▁▁
KL 0 1 1.47 0.68 0.01 0.99 1.45 1.95 2.96 ▃▅▇▅▂
fsgs_vs_norm_KL 0 1 0.13 0.13 0.00 0.06 0.10 0.17 1.55 ▇▁▁▁▁

Chunk time: 0.18 secs

3.4 Visualise differences

We can use the same plotting function to visualise the differences between the conditions.

pair <- "CCL2_ACKR2"

par(mfrow = c(1,2))
par(mar = c(0.3, 0.3, 0.3, 0.3))

plot_lr_wiring(
    ligand_exprs   = as.numeric(norm_net[norm_net$Pair.Name == pair, 17:19]),
    receptor_exprs = as.numeric(norm_net[norm_net$Pair.Name == pair, 20:22]),
    cell_labels    = c("podo","mesa","endo"),
    thresh         = 0
) 

plot_lr_wiring(
    ligand_exprs   = as.numeric(fsgs_net[fsgs_net$Pair.Name == pair, 17:19]),
    receptor_exprs = as.numeric(fsgs_net[fsgs_net$Pair.Name == pair, 20:22]),
    cell_labels    = c("podo","mesa","endo"),
    thresh         = 0
)

Version Author Date
c67cf07 Luke Zappia 2020-09-24

Chunk time: 0.12 secs

Summary

Parameters

This table describes parameters used and set in this document.

params <- list(
    
)
params <- toJSON(params, pretty = TRUE)
kable(fromJSON(params))

Chunk time: 0.01 secs

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

kable(data.frame(
    File = c(
        download_link("parameters.json", OUT_DIR)
    ),
    Description = c(
        "Parameters set and used in this analysis"
    )
))
File Description
parameters.json Parameters set and used in this analysis

Chunk time: 0.01 secs

Session information


sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.0 (2020-04-24)
 os       macOS Catalina 10.15.7      
 system   x86_64, darwin17.0          
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Europe/Berlin               
 date     2020-11-24                  

─ Packages ───────────────────────────────────────────────────────────────────
 ! package     * version    date       lib source                             
 P assertthat    0.2.1      2019-03-21 [?] CRAN (R 4.0.0)                     
 P backports     1.1.6      2020-04-05 [?] CRAN (R 4.0.0)                     
 P base64enc     0.1-3      2015-07-28 [?] CRAN (R 4.0.0)                     
 P base64url     1.4        2018-05-14 [?] standard (@1.4)                    
 P broom         0.5.6      2020-04-20 [?] CRAN (R 4.0.0)                     
 P cellranger    1.1.0      2016-07-27 [?] standard (@1.1.0)                  
 P cli           2.0.2      2020-02-28 [?] CRAN (R 4.0.0)                     
 P colorspace    1.4-1      2019-03-18 [?] standard (@1.4-1)                  
 P conflicted  * 1.0.4      2019-06-21 [?] standard (@1.0.4)                  
 P crayon        1.3.4      2017-09-16 [?] CRAN (R 4.0.0)                     
 P DBI           1.1.0      2019-12-15 [?] CRAN (R 4.0.0)                     
 P dbplyr        1.4.3      2020-04-19 [?] CRAN (R 4.0.0)                     
 P digest        0.6.25     2020-02-23 [?] CRAN (R 4.0.0)                     
 P dplyr       * 0.8.5      2020-03-07 [?] CRAN (R 4.0.0)                     
 P drake         7.12.0     2020-03-25 [?] CRAN (R 4.0.0)                     
 P ellipsis      0.3.0      2019-09-20 [?] CRAN (R 4.0.0)                     
 P evaluate      0.14       2019-05-28 [?] standard (@0.14)                   
 P fansi         0.4.1      2020-01-08 [?] CRAN (R 4.0.0)                     
 P filelock      1.0.2      2018-10-05 [?] CRAN (R 4.0.0)                     
 P forcats     * 0.5.0      2020-03-01 [?] CRAN (R 4.0.0)                     
 P fs          * 1.4.1      2020-04-04 [?] CRAN (R 4.0.0)                     
 P generics      0.0.2      2018-11-29 [?] standard (@0.0.2)                  
 P ggplot2     * 3.3.0      2020-03-05 [?] CRAN (R 4.0.0)                     
 P git2r         0.27.1     2020-05-03 [?] CRAN (R 4.0.0)                     
 P glue        * 1.4.0      2020-04-03 [?] CRAN (R 4.0.0)                     
 P gtable        0.3.0      2019-03-25 [?] standard (@0.3.0)                  
 P haven         2.2.0      2019-11-08 [?] standard (@2.2.0)                  
 P here        * 0.1        2017-05-28 [?] standard (@0.1)                    
 P highr         0.8        2019-03-20 [?] standard (@0.8)                    
 P hms           0.5.3      2020-01-08 [?] CRAN (R 4.0.0)                     
 P htmltools     0.5.0      2020-06-16 [?] CRAN (R 4.0.2)                     
 P httpuv        1.5.2      2019-09-11 [?] standard (@1.5.2)                  
 P httr          1.4.1      2019-08-05 [?] standard (@1.4.1)                  
 P igraph      * 1.2.5      2020-03-19 [?] CRAN (R 4.0.0)                     
 P jsonlite    * 1.6.1      2020-02-02 [?] CRAN (R 4.0.0)                     
 P knitr       * 1.28       2020-02-06 [?] CRAN (R 4.0.0)                     
 P later         1.0.0      2019-10-04 [?] standard (@1.0.0)                  
 P lattice       0.20-41    2020-04-02 [?] CRAN (R 4.0.0)                     
 P lifecycle     0.2.0      2020-03-06 [?] CRAN (R 4.0.0)                     
 P lubridate     1.7.8      2020-04-06 [?] CRAN (R 4.0.0)                     
 P magrittr      1.5        2014-11-22 [?] CRAN (R 4.0.0)                     
 P Matrix        1.2-18     2019-11-27 [?] standard (@1.2-18)                 
 P memoise       1.1.0      2017-04-21 [?] standard (@1.1.0)                  
 P modelr        0.1.7      2020-04-30 [?] CRAN (R 4.0.0)                     
 P munsell       0.5.0      2018-06-12 [?] standard (@0.5.0)                  
 P nlme          3.1-147    2020-04-13 [?] CRAN (R 4.0.0)                     
 P pander      * 0.6.3      2018-11-06 [?] CRAN (R 4.0.0)                     
 P pillar        1.4.4      2020-05-05 [?] CRAN (R 4.0.0)                     
 P pkgconfig     2.0.3      2019-09-22 [?] CRAN (R 4.0.0)                     
 P prettyunits   1.1.1      2020-01-24 [?] CRAN (R 4.0.0)                     
 P progress      1.2.2      2019-05-16 [?] CRAN (R 4.0.0)                     
 P promises      1.1.0      2019-10-04 [?] standard (@1.1.0)                  
 P purrr       * 0.3.4      2020-04-17 [?] CRAN (R 4.0.0)                     
 P R6            2.4.1      2019-11-12 [?] CRAN (R 4.0.0)                     
 P Rcpp          1.0.4.6    2020-04-09 [?] CRAN (R 4.0.0)                     
 P readr       * 1.3.1      2018-12-21 [?] standard (@1.3.1)                  
 P readxl        1.3.1      2019-03-13 [?] standard (@1.3.1)                  
 P renv          0.12.0     2020-08-28 [?] CRAN (R 4.0.2)                     
 P repr          1.1.0      2020-01-28 [?] CRAN (R 4.0.0)                     
 P reprex        0.3.0      2019-05-16 [?] standard (@0.3.0)                  
 P reticulate    1.16       2020-05-27 [?] CRAN (R 4.0.2)                     
 P rlang         0.4.6      2020-05-02 [?] CRAN (R 4.0.0)                     
 P rmarkdown     2.1        2020-01-20 [?] CRAN (R 4.0.0)                     
 P rprojroot     1.3-2      2018-01-03 [?] CRAN (R 4.0.0)                     
 P rstudioapi    0.11       2020-02-07 [?] CRAN (R 4.0.0)                     
 P rvest         0.3.5      2019-11-08 [?] standard (@0.3.5)                  
 P scales        1.1.0      2019-11-18 [?] standard (@1.1.0)                  
 P sessioninfo   1.1.1      2018-11-05 [?] CRAN (R 4.0.0)                     
 P skimr       * 2.1.1      2020-04-16 [?] CRAN (R 4.0.0)                     
 P storr         1.2.1      2018-10-18 [?] standard (@1.2.1)                  
 P stringi       1.4.6      2020-02-17 [?] CRAN (R 4.0.0)                     
 P stringr     * 1.4.0      2019-02-10 [?] CRAN (R 4.0.0)                     
 P talklr      * 0.0.0.9000 2020-09-24 [?] Github (yuliangwang/talklr@12584be)
 P tibble      * 3.0.1      2020-04-20 [?] CRAN (R 4.0.0)                     
 P tidyr       * 1.0.3      2020-05-07 [?] CRAN (R 4.0.0)                     
 P tidyselect    1.0.0      2020-01-27 [?] CRAN (R 4.0.0)                     
 P tidyverse   * 1.3.0      2019-11-21 [?] standard (@1.3.0)                  
 P txtq          0.2.0      2019-10-15 [?] standard (@0.2.0)                  
 P vctrs         0.2.4      2020-03-10 [?] CRAN (R 4.0.0)                     
 P whisker       0.4        2019-08-28 [?] standard (@0.4)                    
 P withr         2.2.0      2020-04-20 [?] CRAN (R 4.0.0)                     
 P workflowr     1.6.2      2020-04-30 [?] CRAN (R 4.0.0)                     
 P xfun          0.13       2020-04-13 [?] CRAN (R 4.0.0)                     
 P xml2          1.3.2      2020-04-23 [?] CRAN (R 4.0.0)                     
 P yaml          2.2.1      2020-02-01 [?] CRAN (R 4.0.0)                     

[1] /Users/luke.zappia/Documents/Projects/interaction-tools/renv/library/R-4.0/x86_64-apple-darwin17.0
[2] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpOqMPdA/renv-system-library
[3] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpqYMqtc/renv-system-library
[4] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpdnSUsW/renv-system-library

 P ── Loaded and on-disk path mismatch.

Chunk time: 0.17 secs

LS0tCnRpdGxlOiAidGFsa2xyIGV4YW1wbGUiCm91dHB1dDogd29ya2Zsb3dyOjp3Zmxvd19odG1sCmVkaXRvcl9vcHRpb25zOgogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlCi0tLQoKYGBge3Igc2V0dXAsIGNhY2hlID0gRkFMU0V9CiMgU2V0dXAgZG9jdW1lbnQKc291cmNlKGhlcmU6OmhlcmUoImNvZGUiLCAic2V0dXAuUiIpKQoKIyBGdW5jdGlvbiBkZXBlbmRlbmNpZXMKaW52aXNpYmxlKGRyYWtlOjpyZWFkZChkb3dubG9hZF9saW5rKSkKYGBgCgpJbnRyb2R1Y3Rpb24gey51bm51bWJlcmVkfQo9PT09PT09PT09PT0KCkluIHRoaXMgZG9jdW1lbnQgd2UgYXJlIGdvaW5nIHRvIHJ1biB0aHJvdWdoIHRoZSBleGFtcGxlIGFuYWx5c2lzIGZvciB0aGUKKip0YWxrbHIqKiBwYWNrYWdlIGFuZCBoYXZlIGEgbG9vayBhdCB0aGUgb3V0cHV0IGl0IHByb2R1Y2VzLiBNb3JlIGluZm9ybWF0aW9uCmFib3V0ICoqdGFsa2xyKiogY2FuIGJlIGZvdW5kIGF0IGh0dHBzOi8vZ2l0aHViLmNvbS95dWxpYW5nd2FuZy90YWxrbHIuCgpgYGB7ciBsaWJyYXJpZXN9CmxpYnJhcnkoInRhbGtsciIpCmxpYnJhcnkoImRwbHlyIikKYGBgCgpJbnB1dAo9PT09PQoKTWVhbiBleHByZXNzaW9uCi0tLS0tLS0tLS0tLS0tLQoKVGhlIG1haW4gaW5wdXQgdG8gKip0YWxrbHIqKiBpcyBhIGBkYXRhLmZyYW1lYCB3aXRoIG1lYW4gZXhwcmVzc2lvbiB2YWx1ZXMgZm9yCmVhY2ggY2VsbCB0eXBlLiBUaGVzZSBzaG91bGQgYmUgbm9ybWFsaXNlZCBmb3Igc2VxdWVuY2luZyBkZXB0aCBidXQgbm90IGdlbmUKbGVuZ3RoIGFuZCBtdXN0IG5vdCBiZSBsb2ctdHJhbnNmb3JtZWQuCgpgYGB7ciBpbnB1dC1leHByfQpleHByIDwtIHJlYWQudGFibGUoCiAgICBzeXN0ZW0uZmlsZSgKICAgICAgICAiZXh0ZGF0YSIsICJnbG9tX25vcm1hbF9kYXRhLnR4dCIsCiAgICAgICAgcGFja2FnZSA9ICJ0YWxrbHIiCiAgICApLAogICAgaGVhZGVyID0gVFJVRSwKICAgIHNlcCAgICA9ICJcdCIKKQoKc2tpbShleHByKQpgYGAKClRoZXJlIGlzIGFsc28gYSBzZWNvbmQgZXhhbXBsZSBkYXRhc2V0IGZyb20gYW5vdGhlciBjb25kaXRpb24uCgpgYGB7ciBpbnB1dC1leHByLWZzZ3N9CmV4cHJfZnNncyA8LSByZWFkLnRhYmxlKAogICAgc3lzdGVtLmZpbGUoCiAgICAgICAgImV4dGRhdGEiLCAiZ2xvbV9mc2dzX2RhdGEudHh0IiwKICAgICAgICBwYWNrYWdlID0gInRhbGtsciIKICAgICksCiAgICBoZWFkZXIgPSBUUlVFLAogICAgc2VwICAgID0gIlx0IgopCgpza2ltKGV4cHJfZnNncykKYGBgCgpEYXRhYmFzZQotLS0tLS0tLQoKQSBsaWdhbmQtcmVjZXB0b3IgZGF0YWJhc2UgaXMgaW5jbHVkZWQgYXMgcGFydCBvZiB0aGUgKip0YWxrbHIqKiBwYWNrYWdlLiBUaGlzCmlzIHVzZWQgYXV0b21hdGljYWxseSBkdXJpbmcgdGhlIGFuYWx5c2lzLgoKYGBge3IgaW5wdXQtZGF0YWJhc2V9CnNraW0odGFsa2xyOjpyZWNlcHRvcl9saWdhbmQpCmBgYAoKU2luZ2xlIGNvbmRpdGlvbgo9PT09PT09PT09PT09PT09CgpCdWlsZCBuZXR3b3JrCi0tLS0tLS0tLS0tLS0KClRoZSBmaXJzdCBzdGVwIGluIGEgKip0YWxrbHIqKiBhbmFseXNpcyBpcyB0byBjb25zdHJ1Y3QgYSBuZXR3b3JrIG9mCmxpZ2FuZC1yZWNlcHRvciBpbnRlcmFjdGlvbnMgYW5kIHByaW9yaXRpc2UgdGhlbSB1c2luZyBLdWxsYmFjay1MZWlibGVyCmRpdmVyZ2VuY2UuIFRoZSBvdXRwdXQgaXMgYSBgZGF0YS5mcmFtZWAgd2l0aCB0aGUgbGlnYW5kLXJlY2VwdG9yIHBhaXJzLCB0aGVpcgpleHByZXNzaW9uIGluIGRpZmZlcmVudCBjZWxsIHR5cGVzIGFuZCB0aGUgS0wgc2NvcmUuCgpgYGB7ciBzaW5nbGUtbmV0d29ya30KbHJfbmV0IDwtIG1ha2VfZXhwcmVzc2VkX25ldCgKICAgIGV4cHIsCiAgICBleHByZXNzZWRfdGhyZXNoID0gNCwKICAgIHJlY2VwdG9yX2xpZ2FuZCwKICAgIEtMX21ldGhvZCA9ICJwcm9kdWN0IiwKICAgIHBzZXVkb19jb3VudCA9IDEKKQpscl9uZXQgPC0gYXJyYW5nZShscl9uZXQsIGRlc2MoS0wpKQoKc2tpbShscl9uZXQpCmBgYAoKVmlzdWFsaXNlIHBhaXJzCi0tLS0tLS0tLS0tLS0tLQoKV2UgY2FuIHRoZW4gdmlzdWFsaXNlIGluZGl2aWR1YWwgbGlnYW5kLXJlY2VwdG9yIHBhaXIgaW50ZXJhY3Rpb25zIGJldHdlZW4gY2VsbAp0eXBlcy4gSGVyZSBhcmUgZXhhbXBsZXMgZm9yIHRoZSB0b3AgdHdvIHBhaXJzLgoKYGBge3Igc2luZ2xlLXZpc30KcGxvdF9scl93aXJpbmcoCiAgICBsaWdhbmRfZXhwcnMgICA9IGFzLm51bWVyaWMobHJfbmV0WzEsIDE3OjE5XSksCiAgICByZWNlcHRvcl9leHBycyA9IGFzLm51bWVyaWMobHJfbmV0WzEsIDIwOjIyXSksCiAgICBjZWxsX2xhYmVscyAgICA9IGMoInBvZG8iLCJtZXNhIiwiZW5kbyIpLAogICAgdGhyZXNoICAgICAgICAgPSAwCikKCnBsb3RfbHJfd2lyaW5nKAogICAgbGlnYW5kX2V4cHJzICAgPSBhcy5udW1lcmljKGxyX25ldFsyLCAxNzoxOV0pLAogICAgcmVjZXB0b3JfZXhwcnMgPSBhcy5udW1lcmljKGxyX25ldFsyLCAyMDoyMl0pLAogICAgY2VsbF9sYWJlbHMgICAgPSBjKCJwb2RvIiwibWVzYSIsImVuZG8iKSwKICAgIHRocmVzaCAgICAgICAgID0gMAopCmBgYAoKREVHIG1ldGhvZAotLS0tLS0tLS0tCgpUZXN0aW5nIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBjYW4gYmUgdXNlZCB0byBzZWxlY3QgdGhvc2UgcGFpcnMgd2hlcmUgYm90aAp0aGUgbGlnYW5kIGFuZCByZWNlcHRvciBhcmUgIm1hcmtlciIgZ2VuZXMgZm9yIGEgY2VsbCB0eXBlLgoKYGBge3Igc2luZ2xlLWRlZ30KbHJfbmV0X2RlZyA8LSBtYWtlX2RlZ19uZXQoCiAgICBleHByLAogICAgbHJfbmV0LAogICAgZmNfdGhyZXNoICAgID0gMywKICAgIHBzZXVkb19jb3VudCA9IDEKKQpgYGAKClRoZXJlIGFyZSAqKmByIG5yb3cobHJfbmV0X2RlZylgKiogcGFpcnMgc2VsZWN0ZWQgdXNpbmcgdGhpcyBtZXRob2QuCgpUd28gY29uZGl0aW9ucwo9PT09PT09PT09PT09PQoKVGhlcmUgaXMgYW5vdGhlciBtb2RlIGluICoqdGFsa2xyKiogdGhhdCBsZXRzIHVzIGNvbXBhcmUgYmV0d2VlbiBjb25kaXRpb25zLgoKR2VuZSBzZWxlY3Rpb24KLS0tLS0tLS0tLS0tLS0KCkZpcnN0IHdlIHNlbGVjdCBnZW5lcyB0aGF0IGFyZSBleHByZXNzZWQgaW4gYXQgbGVhc3Qgb25lIGNlbGwgdHlwZSBpbiBhdCBsZWFzdApvbmUgb2YgdGhlIGNvbmRpdGlvbnMuIFdlIHNldCBhIHRocmVzaG9sZCBvZiBhdCBsZWFzdCA0IGluIGF0IGxlYXN0IDEgY2VsbCB0eXBlLgoKYGBge3IgdHdvLXNlbGVjdGlvbn0KZXhwcmVzc2VkX25vcm0gPC0gcm93U3VtcyhleHByWywgMjpuY29sKGV4cHIpXSA+IDQpID49IDEKZXhwcmVzc2VkX2ZzZ3MgPC0gcm93U3VtcyhleHByX2ZzZ3NbLCAyOm5jb2woZXhwcl9mc2dzKV0gPiA0KSA+PSAxCmV4cHJlc3NlZF9nZW5lcyA8LSBleHByJGdlbmVzW2V4cHJlc3NlZF9ub3JtIHwgZXhwcmVzc2VkX2ZzZ3NdCmBgYAoKQnVpbGQgbmV0d29ya3MKLS0tLS0tLS0tLS0tLS0KCldlIHRoZW4gYnVpbGQgYSBuZXR3b3JrIGZvciBlYWNoIGNvbmRpdGlvbi4KCmBgYHtyIHR3by1uZXR3b3JrfQpub3JtX25ldCA8LSBtYWtlX2V4cHJlc3NlZF9uZXRfc3BlY2lmeV9leHByZXNzZWRfZ2VuZXMoCiAgICBleHByLAogICAgZXhwcmVzc2VkX2dlbmVzLAogICAgcmVjZXB0b3JfbGlnYW5kLAogICAgS0xfbWV0aG9kID0gInByb2R1Y3QiCikKCmZzZ3NfbmV0IDwtIG1ha2VfZXhwcmVzc2VkX25ldF9zcGVjaWZ5X2V4cHJlc3NlZF9nZW5lcygKICAgIGV4cHJfZnNncywKICAgIGV4cHJlc3NlZF9nZW5lcywKICAgIHJlY2VwdG9yX2xpZ2FuZCwKICAgIEtMX21ldGhvZCA9ICJwcm9kdWN0IgopCmBgYAoKQ29tcGFyZSBjb25kaXRpb25zCi0tLS0tLS0tLS0tLS0tLS0tLQoKT25jZSB3ZSBoYXZlIHRoZSB0d28gY29uZGl0aW9ucyB3ZSBjYW4gY29tcGFyZSB0aGVtIHRvIGxvb2sgYXQgdGhlIGRpZmZlcmVuY2VzLgpUaGUgcmVzdWx0IGZyb20gdGhpcyBpcyBzaW1pbGFyIHRvIHdoYXQgd2UgZ2V0IGZvciBhIHNpbmdsZSBjb25kaXRpb24gYnV0IHdpdGgKYW4gZXh0cmEgY29sdW1uIHNjb3JpbmcgdGhlIGRpZmZlcmVuY2UuCgpgYGB7ciB0d28tY29tcGFyZX0Kbm9ybV9uZXQkZnNnc192c19ub3JtX0tMIDwtIGRpc2Vhc2VfdnNfbm9ybWFsX0tMKAogICAgZnNnc19uZXRbLCAxNzoxOV0sCiAgICBmc2dzX25ldFssIDIwOjIyXSwKICAgIG5vcm1fbmV0WywgMTc6MTldLAogICAgbm9ybV9uZXRbLCAyMDoyMl0sCiAgICBwc2V1ZG9fY291bnQgPSAxLAogICAgbWV0aG9kID0gInByb2R1Y3QiCikKCnBlcnR1cmJlZF9uZXQgPC0gYXJyYW5nZShub3JtX25ldCwgZGVzYyhmc2dzX3ZzX25vcm1fS0wpKQoKc2tpbShwZXJ0dXJiZWRfbmV0KQpgYGAKClZpc3VhbGlzZSBkaWZmZXJlbmNlcwotLS0tLS0tLS0tLS0tLS0tLS0tLS0KCldlIGNhbiB1c2UgdGhlIHNhbWUgcGxvdHRpbmcgZnVuY3Rpb24gdG8gdmlzdWFsaXNlIHRoZSBkaWZmZXJlbmNlcyBiZXR3ZWVuIHRoZQpjb25kaXRpb25zLgoKYGBge3IgdHdvLXZpc30KcGFpciA8LSAiQ0NMMl9BQ0tSMiIKCnBhcihtZnJvdyA9IGMoMSwyKSkKcGFyKG1hciA9IGMoMC4zLCAwLjMsIDAuMywgMC4zKSkKCnBsb3RfbHJfd2lyaW5nKAogICAgbGlnYW5kX2V4cHJzICAgPSBhcy5udW1lcmljKG5vcm1fbmV0W25vcm1fbmV0JFBhaXIuTmFtZSA9PSBwYWlyLCAxNzoxOV0pLAogICAgcmVjZXB0b3JfZXhwcnMgPSBhcy5udW1lcmljKG5vcm1fbmV0W25vcm1fbmV0JFBhaXIuTmFtZSA9PSBwYWlyLCAyMDoyMl0pLAogICAgY2VsbF9sYWJlbHMgICAgPSBjKCJwb2RvIiwibWVzYSIsImVuZG8iKSwKICAgIHRocmVzaCAgICAgICAgID0gMAopIAoKcGxvdF9scl93aXJpbmcoCiAgICBsaWdhbmRfZXhwcnMgICA9IGFzLm51bWVyaWMoZnNnc19uZXRbZnNnc19uZXQkUGFpci5OYW1lID09IHBhaXIsIDE3OjE5XSksCiAgICByZWNlcHRvcl9leHBycyA9IGFzLm51bWVyaWMoZnNnc19uZXRbZnNnc19uZXQkUGFpci5OYW1lID09IHBhaXIsIDIwOjIyXSksCiAgICBjZWxsX2xhYmVscyAgICA9IGMoInBvZG8iLCJtZXNhIiwiZW5kbyIpLAogICAgdGhyZXNoICAgICAgICAgPSAwCikKYGBgCgpTdW1tYXJ5IHsudW5udW1iZXJlZH0KPT09PT09PQoKUGFyYW1ldGVycyB7LnVubnVtYmVyZWR9Ci0tLS0tLS0tLS0KClRoaXMgdGFibGUgZGVzY3JpYmVzIHBhcmFtZXRlcnMgdXNlZCBhbmQgc2V0IGluIHRoaXMgZG9jdW1lbnQuCgpgYGB7ciBwYXJhbWV0ZXJzfQpwYXJhbXMgPC0gbGlzdCgKICAgIAopCnBhcmFtcyA8LSB0b0pTT04ocGFyYW1zLCBwcmV0dHkgPSBUUlVFKQprYWJsZShmcm9tSlNPTihwYXJhbXMpKQpgYGAKCk91dHB1dCBmaWxlcyB7LnVubnVtYmVyZWR9Ci0tLS0tLS0tLS0tLQoKVGhpcyB0YWJsZSBkZXNjcmliZXMgdGhlIG91dHB1dCBmaWxlcyBwcm9kdWNlZCBieSB0aGlzIGRvY3VtZW50LiBSaWdodCBjbGljawphbmQgX1NhdmUgTGluayBBcy4uLl8gdG8gZG93bmxvYWQgdGhlIHJlc3VsdHMuCgpgYGB7ciBvdXRwdXR9CmthYmxlKGRhdGEuZnJhbWUoCiAgICBGaWxlID0gYygKICAgICAgICBkb3dubG9hZF9saW5rKCJwYXJhbWV0ZXJzLmpzb24iLCBPVVRfRElSKQogICAgKSwKICAgIERlc2NyaXB0aW9uID0gYygKICAgICAgICAiUGFyYW1ldGVycyBzZXQgYW5kIHVzZWQgaW4gdGhpcyBhbmFseXNpcyIKICAgICkKKSkKYGBgCgpTZXNzaW9uIGluZm9ybWF0aW9uIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLS0tLS0tLS0tLQo=