Last updated: 2020-11-24

Checks: 7 0

Knit directory: interaction-tools/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191213) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0333fe3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .drake/
    Ignored:    data/COMUNET/
    Ignored:    data/CellChat/
    Ignored:    data/ICELLNET/
    Ignored:    data/NicheNet/
    Ignored:    data/cellphonedb/
    Ignored:    data/celltalker/
    Ignored:    output/14-CellChat.Rmd/
    Ignored:    output/15-talklr.Rmd/
    Ignored:    output/16-CiteFuse.Rmd/
    Ignored:    output/17-scTHI.Rmd/
    Ignored:    output/18-celltalker.Rmd/
    Ignored:    output/index.Rmd/
    Ignored:    renv/library/
    Ignored:    renv/python/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   _drake.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/16-CiteFuse.Rmd) and HTML (docs/16-CiteFuse.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html d85e512 Luke Zappia 2020-11-09 Build CiteFuse
Rmd 70de07f Luke Zappia 2020-11-09 Add CiteFuse tutorial
Rmd bb91bf5 Luke Zappia 2020-11-09 Create CiteFuse document

# Setup document
source(here::here("code", "setup.R"))

# Function dependencies
invisible(drake::readd(download_link))

Introduction

In this document we are going to run through the example analysis for the CiteFuse package and have a look at the output it produces. This package is primarily for analysing CITE-seq data but it’s cell-cell interaction function also works with regular scRNA-seq. More information about CiteFuse can be found at https://github.com/SydneyBioX/CiteFuse/.

library("CiteFuse")

Chunk time: 5.71 secs

1 Input

1.1 Expression

The main input for CiteFuse is provided as a list of matrices:

data("CITEseq_example", package = "CiteFuse")

Chunk time: 0.26 secs

The list contains 3 items: RNA, ADT and HTO

For this example we will just use the RNA matrix.

pander(as.matrix(CITEseq_example$RNA[1:5, 1:5]))
Table continues below
  AAGCCGCGTTGTCTTT GATCGCGGTTATCGGT GGCTGGTAGAGGTTAT
hg19_AL627309.1 0 0 0
hg19_AL669831.5 0 0 0
hg19_FAM87B 0 0 0
hg19_LINC00115 0 0 0
hg19_FAM41C 0 0 0
  CTACACCCAATAGCAA ACAGCTACAGATCGGA
hg19_AL627309.1 0 0
hg19_AL669831.5 0 0
hg19_FAM87B 0 0
hg19_LINC00115 0 0
hg19_FAM41C 0 0

Chunk time: 0.2 secs

The full matrix has 19521 rows (genes) and 500 columns (cells).

1.2 Ligand-receptor pairs

The other thing we need is a set of ligand-receptor pairs. For this example we use a subset provided with the package as a matrix. Because we are only use the RNA data we need to add a prefix to the receptor column.

data("lr_pair_subset", package = "CiteFuse")

# Modify the pair names because we are using just RNA
modified_lr_pairs <- lr_pair_subset
modified_lr_pairs[, 2] <- paste0("hg19_", modified_lr_pairs[, 2])

pander(as.matrix(modified_lr_pairs[1:5, 1:2]))
hg19_IL17RA hg19_CD45
hg19_FAS hg19_CD11b
hg19_GZMK hg19_CD62L
hg19_CD40LG hg19_CD11b
hg19_FLT3LG hg19_CD62L

Chunk time: 0.02 secs

The matrix has 50 rows (pairs) and 2 columns.

2 Pre-processing

The first step is to create a SingleCellExperiment object to hold the expression data.

sce <- preprocessing(CITEseq_example$RNA)

sce
class: SingleCellExperiment 
dim: 19521 500 
metadata(0):
assays(1): counts
rownames(19521): hg19_AL627309.1 hg19_AL669831.5 ... hg19_MT-ND6
  hg19_MT-CYB
rowData names(0):
colnames(500): AAGCCGCGTTGTCTTT GATCGCGGTTATCGGT ... TTGGCAACACTAGTAC
  GCTGCGAGTTGTGGCC
colData names(0):
reducedDimNames(0):
altExpNames(0):

Chunk time: 0.29 secs

The dataset has 19521 genes and 500 cells.

3 Normalisation

Next we normalise the expression values. This is done in two steps where the scater logNormCounts() is used to correct for sequencing depth and log-transform before a min-max transformation is applied.

sce <- scater::logNormCounts(sce)

sce <- normaliseExprs(
    sce,
    altExp_name = "none",
    exprs_value = "logcounts",
    transform   = "minMax"
)

sce
class: SingleCellExperiment 
dim: 19521 500 
metadata(0):
assays(3): counts logcounts minMax
rownames(19521): hg19_AL627309.1 hg19_AL669831.5 ... hg19_MT-ND6
  hg19_MT-CYB
rowData names(0):
colnames(500): AAGCCGCGTTGTCTTT GATCGCGGTTATCGGT ... TTGGCAACACTAGTAC
  GCTGCGAGTTGTGGCC
colData names(1): sizeFactor
reducedDimNames(0):
altExpNames(0):

Chunk time: 3.54 secs

4 Clustering

This example dataset doesn’t come with cluster labels. In the original dataset they perform clustering on the combined CITE-seq data, but here we will quickly cluster just the RNA.

**NOTE: This may not give ideal clusters and could be the cause of any weirdness in the following sections.

sce <- scater::runPCA(sce)
graph <- scran::buildSNNGraph(sce, k=10, use.dimred = "PCA")
clusters <- igraph::cluster_louvain(graph)$membership

Chunk time: 0.57 secs

This gives us 6 clusters.

5 Testing

Once the data is normalised and clustered we can perform the test for ligand-receptor activity.

# Modify the pair names because we are using just RNA
modified_lr_pairs <- lr_pair_subset
modified_lr_pairs[, 2] <- paste0("hg19_", modified_lr_pairs[, 2])

sce <- ligandReceptorTest(
    sce,
    ligandReceptor_list = modified_lr_pairs,
    cluster             = factor(clusters),
    RNA_exprs_value     = "minMax",
    use_alt_exp         = FALSE,
    num_permute         = 1000
)
100 ......200 ......300 ......400 ......500 ......600 ......700 ......800 ......900 ......1000 ......

Chunk time: 39.59 secs

6 Visualisation

Let’s have a look at the results.

6.1 Heatmap

Heatmap of p-values for ligand-receptor pairs.

visLigandReceptor(
    sce,
    type = "pval_heatmap",
    receptor_type = "RNA"
)

Version Author Date
d85e512 Luke Zappia 2020-11-09

Chunk time: 0.4 secs

6.2 Dot plot

Dot plot of p-values for ligand-receptor pairs.

visLigandReceptor(
    sce,
    type = "pval_dotplot",
    receptor_type = "RNA"
)

Version Author Date
d85e512 Luke Zappia 2020-11-09

Chunk time: 0.73 secs

6.3 Cluster network

Network of interactions between clusters.

visLigandReceptor(
    sce,
    type = "group_network",
    receptor_type = "RNA"
)

Version Author Date
d85e512 Luke Zappia 2020-11-09

Chunk time: 0.46 secs

6.4 Cluster heatmap

Heatmap of interactions between clusters.

visLigandReceptor(
    sce,
    type = "group_heatmap",
    receptor_type = "RNA"
)

Version Author Date
d85e512 Luke Zappia 2020-11-09

Chunk time: 0.13 secs

6.5 Ligand-receptor network

Network of ligands and receptors. Here the nodes are ligands and receptors and the edges are interactions between clusters.

visLigandReceptor(
    sce,
    type = "lr_network",
    receptor_type = "RNA"
)

Version Author Date
d85e512 Luke Zappia 2020-11-09

Chunk time: 0.28 secs

Summary

Parameters

This table describes parameters used and set in this document.

params <- list(
    
)
params <- toJSON(params, pretty = TRUE)
kable(fromJSON(params))

Chunk time: 0.01 secs

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

kable(data.frame(
    File = c(
        download_link("parameters.json", OUT_DIR)
    ),
    Description = c(
        "Parameters set and used in this analysis"
    )
))
File Description
parameters.json Parameters set and used in this analysis

Chunk time: 0.02 secs

Session information


sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.0 (2020-04-24)
 os       macOS Catalina 10.15.7      
 system   x86_64, darwin17.0          
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Europe/Berlin               
 date     2020-11-24                  

─ Packages ───────────────────────────────────────────────────────────────────
 ! package              * version  date       lib source            
 P alluvial               0.1-2    2016-09-09 [?] CRAN (R 4.0.2)    
 P assertthat             0.2.1    2019-03-21 [?] CRAN (R 4.0.0)    
 P backports              1.1.6    2020-04-05 [?] CRAN (R 4.0.0)    
 P base64enc              0.1-3    2015-07-28 [?] CRAN (R 4.0.0)    
 P base64url              1.4      2018-05-14 [?] standard (@1.4)   
 P beeswarm               0.2.3    2016-04-25 [?] CRAN (R 4.0.2)    
   Biobase                2.48.0   2020-04-27 [1] Bioconductor      
   BiocGenerics           0.34.0   2020-04-27 [1] Bioconductor      
 P BiocNeighbors          1.6.0    2020-04-27 [?] Bioconductor      
 P BiocParallel           1.22.0   2020-04-27 [?] Bioconductor      
 P BiocSingular           1.4.0    2020-04-27 [?] Bioconductor      
   bitops                 1.0-6    2013-08-17 [1] CRAN (R 4.0.0)    
 P broom                  0.5.6    2020-04-20 [?] CRAN (R 4.0.0)    
 P cellranger             1.1.0    2016-07-27 [?] standard (@1.1.0) 
 P CiteFuse             * 1.0.0    2020-04-27 [?] Bioconductor      
 P cli                    2.0.2    2020-02-28 [?] CRAN (R 4.0.0)    
 P colorspace             1.4-1    2019-03-18 [?] standard (@1.4-1) 
 P conflicted           * 1.0.4    2019-06-21 [?] standard (@1.0.4) 
 P cowplot                1.0.0    2019-07-11 [?] CRAN (R 4.0.0)    
 P crayon                 1.3.4    2017-09-16 [?] CRAN (R 4.0.0)    
 P DBI                    1.1.0    2019-12-15 [?] CRAN (R 4.0.0)    
 P dbplyr                 1.4.3    2020-04-19 [?] CRAN (R 4.0.0)    
 P dbscan                 1.1-5    2019-10-23 [?] CRAN (R 4.0.2)    
 P DelayedArray           0.14.1   2020-07-14 [?] Bioconductor      
 P DelayedMatrixStats     1.10.1   2020-07-03 [?] Bioconductor      
 P digest                 0.6.25   2020-02-23 [?] CRAN (R 4.0.0)    
 P dplyr                * 0.8.5    2020-03-07 [?] CRAN (R 4.0.0)    
   dqrng                  0.2.1    2019-05-17 [1] CRAN (R 4.0.0)    
 P drake                  7.12.0   2020-03-25 [?] CRAN (R 4.0.0)    
 P edgeR                  3.30.3   2020-06-02 [?] Bioconductor      
 P ellipsis               0.3.0    2019-09-20 [?] CRAN (R 4.0.0)    
 P evaluate               0.14     2019-05-28 [?] standard (@0.14)  
 P ExPosition             2.8.23   2019-01-07 [?] CRAN (R 4.0.2)    
 P fansi                  0.4.1    2020-01-08 [?] CRAN (R 4.0.0)    
 P farver                 2.0.3    2020-01-16 [?] CRAN (R 4.0.0)    
 P filelock               1.0.2    2018-10-05 [?] CRAN (R 4.0.0)    
 P forcats              * 0.5.0    2020-03-01 [?] CRAN (R 4.0.0)    
 P fs                   * 1.4.1    2020-04-04 [?] CRAN (R 4.0.0)    
 P generics               0.0.2    2018-11-29 [?] standard (@0.0.2) 
 P GenomeInfoDb           1.24.2   2020-06-15 [?] Bioconductor      
 P GenomeInfoDbData       1.2.3    2020-11-09 [?] Bioconductor      
 P GenomicRanges          1.40.0   2020-04-27 [?] Bioconductor      
 P ggbeeswarm             0.6.0    2017-08-07 [?] CRAN (R 4.0.2)    
 P ggforce                0.3.2    2020-06-23 [?] CRAN (R 4.0.2)    
 P ggplot2              * 3.3.0    2020-03-05 [?] CRAN (R 4.0.0)    
 P ggraph                 2.0.3    2020-05-20 [?] CRAN (R 4.0.2)    
   ggrepel                0.8.2    2020-03-08 [1] CRAN (R 4.0.0)    
   ggridges               0.5.2    2020-01-12 [1] CRAN (R 4.0.0)    
 P git2r                  0.27.1   2020-05-03 [?] CRAN (R 4.0.0)    
 P glue                 * 1.4.0    2020-04-03 [?] CRAN (R 4.0.0)    
 P graphlayouts           0.7.1    2020-10-26 [?] CRAN (R 4.0.2)    
   gridExtra              2.3      2017-09-09 [1] CRAN (R 4.0.0)    
 P gtable                 0.3.0    2019-03-25 [?] standard (@0.3.0) 
 P haven                  2.2.0    2019-11-08 [?] standard (@2.2.0) 
 P heatmap.plus           1.3      2012-10-29 [?] CRAN (R 4.0.2)    
 P here                 * 0.1      2017-05-28 [?] standard (@0.1)   
 P highr                  0.8      2019-03-20 [?] standard (@0.8)   
 P hms                    0.5.3    2020-01-08 [?] CRAN (R 4.0.0)    
 P htmltools              0.5.0    2020-06-16 [?] CRAN (R 4.0.2)    
 P httpuv                 1.5.2    2019-09-11 [?] standard (@1.5.2) 
 P httr                   1.4.1    2019-08-05 [?] standard (@1.4.1) 
 P igraph                 1.2.5    2020-03-19 [?] CRAN (R 4.0.0)    
   IRanges                2.22.2   2020-05-21 [1] Bioconductor      
   irlba                  2.3.3    2019-02-05 [1] CRAN (R 4.0.0)    
 P jsonlite             * 1.6.1    2020-02-02 [?] CRAN (R 4.0.0)    
 P kernlab                0.9-29   2019-11-12 [?] CRAN (R 4.0.2)    
 P knitr                * 1.28     2020-02-06 [?] CRAN (R 4.0.0)    
 P labeling               0.3      2014-08-23 [?] standard (@0.3)   
 P later                  1.0.0    2019-10-04 [?] standard (@1.0.0) 
 P lattice                0.20-41  2020-04-02 [?] CRAN (R 4.0.0)    
 P lifecycle              0.2.0    2020-03-06 [?] CRAN (R 4.0.0)    
 P limma                  3.44.1   2020-04-28 [?] Bioconductor      
 P locfit                 1.5-9.4  2020-03-25 [?] CRAN (R 4.0.2)    
 P lubridate              1.7.8    2020-04-06 [?] CRAN (R 4.0.0)    
 P magrittr               1.5      2014-11-22 [?] CRAN (R 4.0.0)    
 P MASS                   7.3-51.6 2020-04-26 [?] CRAN (R 4.0.0)    
 P Matrix                 1.2-18   2019-11-27 [?] standard (@1.2-18)
   matrixStats            0.56.0   2020-03-13 [1] CRAN (R 4.0.2)    
 P memoise                1.1.0    2017-04-21 [?] standard (@1.1.0) 
 P mixtools               1.2.0    2020-02-07 [?] CRAN (R 4.0.2)    
 P modelr                 0.1.7    2020-04-30 [?] CRAN (R 4.0.0)    
 P munsell                0.5.0    2018-06-12 [?] standard (@0.5.0) 
 P nlme                   3.1-147  2020-04-13 [?] CRAN (R 4.0.0)    
 P pander               * 0.6.3    2018-11-06 [?] CRAN (R 4.0.0)    
 P pheatmap               1.0.12   2019-01-04 [?] CRAN (R 4.0.0)    
 P pillar                 1.4.4    2020-05-05 [?] CRAN (R 4.0.0)    
 P pkgconfig              2.0.3    2019-09-22 [?] CRAN (R 4.0.0)    
 P plyr                   1.8.6    2020-03-03 [?] CRAN (R 4.0.0)    
 P polyclip               1.10-0   2019-03-14 [?] CRAN (R 4.0.0)    
 P prettyGraphs           2.1.6    2018-12-18 [?] CRAN (R 4.0.2)    
 P prettyunits            1.1.1    2020-01-24 [?] CRAN (R 4.0.0)    
 P progress               1.2.2    2019-05-16 [?] CRAN (R 4.0.0)    
 P promises               1.1.0    2019-10-04 [?] standard (@1.1.0) 
 P propr                  4.2.6    2019-12-16 [?] CRAN (R 4.0.2)    
 P purrr                * 0.3.4    2020-04-17 [?] CRAN (R 4.0.0)    
 P R6                     2.4.1    2019-11-12 [?] CRAN (R 4.0.0)    
   randomForest           4.6-14   2018-03-25 [1] CRAN (R 4.0.0)    
 P RColorBrewer           1.1-2    2014-12-07 [?] standard (@1.1-2) 
 P Rcpp                   1.0.4.6  2020-04-09 [?] CRAN (R 4.0.0)    
 P RCurl                  1.98-1.2 2020-04-18 [?] CRAN (R 4.0.2)    
 P readr                * 1.3.1    2018-12-21 [?] standard (@1.3.1) 
 P readxl                 1.3.1    2019-03-13 [?] standard (@1.3.1) 
 P renv                   0.12.0   2020-08-28 [?] CRAN (R 4.0.2)    
 P repr                   1.1.0    2020-01-28 [?] CRAN (R 4.0.0)    
 P reprex                 0.3.0    2019-05-16 [?] standard (@0.3.0) 
 P reshape2               1.4.4    2020-04-09 [?] CRAN (R 4.0.0)    
 P reticulate             1.16     2020-05-27 [?] CRAN (R 4.0.2)    
 P rhdf5                  2.32.4   2020-10-05 [?] Bioconductor      
 P Rhdf5lib               1.10.1   2020-07-09 [?] Bioconductor      
 P rlang                  0.4.6    2020-05-02 [?] CRAN (R 4.0.0)    
 P rmarkdown              2.1      2020-01-20 [?] CRAN (R 4.0.0)    
 P rprojroot              1.3-2    2018-01-03 [?] CRAN (R 4.0.0)    
 P rstudioapi             0.11     2020-02-07 [?] CRAN (R 4.0.0)    
   rsvd                   1.0.3    2020-02-17 [1] CRAN (R 4.0.0)    
   Rtsne                  0.15     2018-11-10 [1] CRAN (R 4.0.0)    
 P rvest                  0.3.5    2019-11-08 [?] standard (@0.3.5) 
   S4Vectors              0.26.1   2020-05-16 [1] Bioconductor      
 P scales                 1.1.0    2019-11-18 [?] standard (@1.1.0) 
 P scater                 1.16.2   2020-06-26 [?] Bioconductor      
 P scran                  1.16.0   2020-04-27 [?] Bioconductor      
 P segmented              1.3-0    2020-10-27 [?] CRAN (R 4.0.2)    
 P sessioninfo            1.1.1    2018-11-05 [?] CRAN (R 4.0.0)    
 P SingleCellExperiment   1.10.1   2020-04-28 [?] Bioconductor      
 P skimr                * 2.1.1    2020-04-16 [?] CRAN (R 4.0.0)    
 P SNFtool                2.3.0    2018-04-24 [?] CRAN (R 4.0.2)    
   statmod                1.4.34   2020-02-17 [1] CRAN (R 4.0.0)    
 P storr                  1.2.1    2018-10-18 [?] standard (@1.2.1) 
 P stringi                1.4.6    2020-02-17 [?] CRAN (R 4.0.0)    
 P stringr              * 1.4.0    2019-02-10 [?] CRAN (R 4.0.0)    
 P SummarizedExperiment   1.18.2   2020-07-14 [?] Bioconductor      
 P survival               3.2-7    2020-09-28 [?] CRAN (R 4.0.2)    
 P tibble               * 3.0.1    2020-04-20 [?] CRAN (R 4.0.0)    
 P tidygraph              1.2.0    2020-05-12 [?] CRAN (R 4.0.2)    
 P tidyr                * 1.0.3    2020-05-07 [?] CRAN (R 4.0.0)    
 P tidyselect             1.0.0    2020-01-27 [?] CRAN (R 4.0.0)    
 P tidyverse            * 1.3.0    2019-11-21 [?] standard (@1.3.0) 
 P tweenr                 1.0.1    2018-12-14 [?] CRAN (R 4.0.2)    
 P txtq                   0.2.0    2019-10-15 [?] standard (@0.2.0) 
   uwot                   0.1.8    2020-03-16 [1] CRAN (R 4.0.0)    
 P vctrs                  0.2.4    2020-03-10 [?] CRAN (R 4.0.0)    
 P vipor                  0.4.5    2017-03-22 [?] CRAN (R 4.0.2)    
   viridis                0.5.1    2018-03-29 [1] CRAN (R 4.0.0)    
 P viridisLite            0.3.0    2018-02-01 [?] standard (@0.3.0) 
 P whisker                0.4      2019-08-28 [?] standard (@0.4)   
 P withr                  2.2.0    2020-04-20 [?] CRAN (R 4.0.0)    
 P workflowr              1.6.2    2020-04-30 [?] CRAN (R 4.0.0)    
 P xfun                   0.13     2020-04-13 [?] CRAN (R 4.0.0)    
 P xml2                   1.3.2    2020-04-23 [?] CRAN (R 4.0.0)    
 P XVector                0.28.0   2020-04-27 [?] Bioconductor      
 P yaml                   2.2.1    2020-02-01 [?] CRAN (R 4.0.0)    
 P zlibbioc               1.34.0   2020-04-27 [?] Bioconductor      

[1] /Users/luke.zappia/Documents/Projects/interaction-tools/renv/library/R-4.0/x86_64-apple-darwin17.0
[2] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpOqMPdA/renv-system-library
[3] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpqYMqtc/renv-system-library
[4] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpZnfjWL/renv-system-library

 P ── Loaded and on-disk path mismatch.

Chunk time: 0.24 secs

LS0tCnRpdGxlOiAiQ2l0ZUZ1c2UgZXhhbXBsZSIKb3V0cHV0OiB3b3JrZmxvd3I6OndmbG93X2h0bWwKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgpgYGB7ciBzZXR1cCwgY2FjaGUgPSBGQUxTRX0KIyBTZXR1cCBkb2N1bWVudApzb3VyY2UoaGVyZTo6aGVyZSgiY29kZSIsICJzZXR1cC5SIikpCgojIEZ1bmN0aW9uIGRlcGVuZGVuY2llcwppbnZpc2libGUoZHJha2U6OnJlYWRkKGRvd25sb2FkX2xpbmspKQpgYGAKCkludHJvZHVjdGlvbiB7LnVubnVtYmVyZWR9Cj09PT09PT09PT09PQoKSW4gdGhpcyBkb2N1bWVudCB3ZSBhcmUgZ29pbmcgdG8gcnVuIHRocm91Z2ggdGhlIGV4YW1wbGUgYW5hbHlzaXMgZm9yIHRoZSAqKkNpdGVGdXNlKiogcGFja2FnZSBhbmQgaGF2ZSBhIGxvb2sgYXQgdGhlIG91dHB1dCBpdCBwcm9kdWNlcy4KVGhpcyBwYWNrYWdlIGlzIHByaW1hcmlseSBmb3IgYW5hbHlzaW5nIENJVEUtc2VxIGRhdGEgYnV0IGl0J3MgY2VsbC1jZWxsIGludGVyYWN0aW9uIGZ1bmN0aW9uIGFsc28gd29ya3Mgd2l0aCByZWd1bGFyIHNjUk5BLXNlcS4KTW9yZSBpbmZvcm1hdGlvbiBhYm91dCAqKkNpdGVGdXNlKiogY2FuIGJlIGZvdW5kIGF0IGh0dHBzOi8vZ2l0aHViLmNvbS9TeWRuZXlCaW9YL0NpdGVGdXNlLy4KCmBgYHtyIGxpYnJhcmllc30KbGlicmFyeSgiQ2l0ZUZ1c2UiKQpgYGAKCklucHV0Cj09PT09CgpFeHByZXNzaW9uCi0tLS0tLS0tLS0KClRoZSBtYWluIGlucHV0IGZvciBDaXRlRnVzZSBpcyBwcm92aWRlZCBhcyBhIGxpc3Qgb2YgbWF0cmljZXM6CgpgYGB7ciBleHByZXNzaW9ufQpkYXRhKCJDSVRFc2VxX2V4YW1wbGUiLCBwYWNrYWdlID0gIkNpdGVGdXNlIikKYGBgCgpUaGUgbGlzdCBjb250YWlucyAqKmByIGxlbmd0aChDSVRFc2VxX2V4YW1wbGUpYCoqIGl0ZW1zOiAKYHIgZ2x1ZV9jb2xsYXBzZShnbHVlKCIqKntuYW1lcyhDSVRFc2VxX2V4YW1wbGUpfSoqIiksIHNlcCA9ICIsICIsIGxhc3QgPSAiIGFuZCAiKWAKCkZvciB0aGlzIGV4YW1wbGUgd2Ugd2lsbCBqdXN0IHVzZSB0aGUgUk5BIG1hdHJpeC4KCmBgYHtyIGV4cHJlc3Npb24tcm5hfQpwYW5kZXIoYXMubWF0cml4KENJVEVzZXFfZXhhbXBsZSRSTkFbMTo1LCAxOjVdKSkKYGBgCgpUaGUgZnVsbCBtYXRyaXggaGFzICoqYHIgbnJvdyhDSVRFc2VxX2V4YW1wbGUkUk5BKWAqKiByb3dzIChnZW5lcykgYW5kICoqYHIgbmNvbChDSVRFc2VxX2V4YW1wbGUkUk5BKWAqKiBjb2x1bW5zIChjZWxscykuCgpMaWdhbmQtcmVjZXB0b3IgcGFpcnMKLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgpUaGUgb3RoZXIgdGhpbmcgd2UgbmVlZCBpcyBhIHNldCBvZiBsaWdhbmQtcmVjZXB0b3IgcGFpcnMuCkZvciB0aGlzIGV4YW1wbGUgd2UgdXNlIGEgc3Vic2V0IHByb3ZpZGVkIHdpdGggdGhlIHBhY2thZ2UgYXMgYSBtYXRyaXguCkJlY2F1c2Ugd2UgYXJlIG9ubHkgdXNlIHRoZSBSTkEgZGF0YSB3ZSBuZWVkIHRvIGFkZCBhIHByZWZpeCB0byB0aGUgcmVjZXB0b3IgY29sdW1uLgoKYGBge3IgbHItcGFpcnN9CmRhdGEoImxyX3BhaXJfc3Vic2V0IiwgcGFja2FnZSA9ICJDaXRlRnVzZSIpCgojIE1vZGlmeSB0aGUgcGFpciBuYW1lcyBiZWNhdXNlIHdlIGFyZSB1c2luZyBqdXN0IFJOQQptb2RpZmllZF9scl9wYWlycyA8LSBscl9wYWlyX3N1YnNldAptb2RpZmllZF9scl9wYWlyc1ssIDJdIDwtIHBhc3RlMCgiaGcxOV8iLCBtb2RpZmllZF9scl9wYWlyc1ssIDJdKQoKcGFuZGVyKGFzLm1hdHJpeChtb2RpZmllZF9scl9wYWlyc1sxOjUsIDE6Ml0pKQpgYGAKClRoZSBtYXRyaXggaGFzICoqYHIgbnJvdyhscl9wYWlyX3N1YnNldClgKiogcm93cyAocGFpcnMpIGFuZCAqKmByIG5jb2wobHJfcGFpcl9zdWJzZXQpYCoqIGNvbHVtbnMuCgpQcmUtcHJvY2Vzc2luZwo9PT09PT09PT09PT09PQoKVGhlIGZpcnN0IHN0ZXAgaXMgdG8gY3JlYXRlIGEgYFNpbmdsZUNlbGxFeHBlcmltZW50YCBvYmplY3QgdG8gaG9sZCB0aGUKZXhwcmVzc2lvbiBkYXRhLgoKYGBge3Igc2NlfQpzY2UgPC0gcHJlcHJvY2Vzc2luZyhDSVRFc2VxX2V4YW1wbGUkUk5BKQoKc2NlCmBgYAoKVGhlIGRhdGFzZXQgaGFzICoqYHIgbnJvdyhzY2UpYCoqIGdlbmVzIGFuZCAqKmByIG5jb2woc2NlKWAqKiBjZWxscy4KCk5vcm1hbGlzYXRpb24KPT09PT09PT09PT09PQoKTmV4dCB3ZSBub3JtYWxpc2UgdGhlIGV4cHJlc3Npb24gdmFsdWVzLgpUaGlzIGlzIGRvbmUgaW4gdHdvIHN0ZXBzIHdoZXJlIHRoZSAqKnNjYXRlcioqIGBsb2dOb3JtQ291bnRzKClgIGlzIHVzZWQgdG8gY29ycmVjdCBmb3Igc2VxdWVuY2luZyBkZXB0aCBhbmQgbG9nLXRyYW5zZm9ybSBiZWZvcmUgYSBtaW4tbWF4IHRyYW5zZm9ybWF0aW9uIGlzIGFwcGxpZWQuIAoKYGBge3Igbm9ybWFsaXNhdGlvbn0Kc2NlIDwtIHNjYXRlcjo6bG9nTm9ybUNvdW50cyhzY2UpCgpzY2UgPC0gbm9ybWFsaXNlRXhwcnMoCiAgICBzY2UsCiAgICBhbHRFeHBfbmFtZSA9ICJub25lIiwKICAgIGV4cHJzX3ZhbHVlID0gImxvZ2NvdW50cyIsCiAgICB0cmFuc2Zvcm0gICA9ICJtaW5NYXgiCikKCnNjZQpgYGAKCkNsdXN0ZXJpbmcKPT09PT09PT09PQoKVGhpcyBleGFtcGxlIGRhdGFzZXQgZG9lc24ndCBjb21lIHdpdGggY2x1c3RlciBsYWJlbHMuCkluIHRoZSBvcmlnaW5hbCBkYXRhc2V0IHRoZXkgcGVyZm9ybSBjbHVzdGVyaW5nIG9uIHRoZSBjb21iaW5lZCBDSVRFLXNlcSBkYXRhLCBidXQgaGVyZSB3ZSB3aWxsIHF1aWNrbHkgY2x1c3RlciBqdXN0IHRoZSBSTkEuCgo+ICoqTk9URTogVGhpcyBtYXkgbm90IGdpdmUgaWRlYWwgY2x1c3RlcnMgYW5kIGNvdWxkIGJlIHRoZSBjYXVzZSBvZiBhbnkgd2VpcmRuZXNzIGluIHRoZSBmb2xsb3dpbmcgc2VjdGlvbnMuCgpgYGB7ciBjbHVzdGVyaW5nfQpzY2UgPC0gc2NhdGVyOjpydW5QQ0Eoc2NlKQpncmFwaCA8LSBzY3Jhbjo6YnVpbGRTTk5HcmFwaChzY2UsIGs9MTAsIHVzZS5kaW1yZWQgPSAiUENBIikKY2x1c3RlcnMgPC0gaWdyYXBoOjpjbHVzdGVyX2xvdXZhaW4oZ3JhcGgpJG1lbWJlcnNoaXAKYGBgCgpUaGlzIGdpdmVzIHVzICoqYHIgbGVuZ3RoKHVuaXF1ZShjbHVzdGVycykpYCoqIGNsdXN0ZXJzLgoKVGVzdGluZwo9PT09PT09CgpPbmNlIHRoZSBkYXRhIGlzIG5vcm1hbGlzZWQgYW5kIGNsdXN0ZXJlZCB3ZSBjYW4gcGVyZm9ybSB0aGUgdGVzdCBmb3IgbGlnYW5kLXJlY2VwdG9yIGFjdGl2aXR5LgoKYGBge3IgdGVzdH0KIyBNb2RpZnkgdGhlIHBhaXIgbmFtZXMgYmVjYXVzZSB3ZSBhcmUgdXNpbmcganVzdCBSTkEKbW9kaWZpZWRfbHJfcGFpcnMgPC0gbHJfcGFpcl9zdWJzZXQKbW9kaWZpZWRfbHJfcGFpcnNbLCAyXSA8LSBwYXN0ZTAoImhnMTlfIiwgbW9kaWZpZWRfbHJfcGFpcnNbLCAyXSkKCnNjZSA8LSBsaWdhbmRSZWNlcHRvclRlc3QoCiAgICBzY2UsCiAgICBsaWdhbmRSZWNlcHRvcl9saXN0ID0gbW9kaWZpZWRfbHJfcGFpcnMsCiAgICBjbHVzdGVyICAgICAgICAgICAgID0gZmFjdG9yKGNsdXN0ZXJzKSwKICAgIFJOQV9leHByc192YWx1ZSAgICAgPSAibWluTWF4IiwKICAgIHVzZV9hbHRfZXhwICAgICAgICAgPSBGQUxTRSwKICAgIG51bV9wZXJtdXRlICAgICAgICAgPSAxMDAwCikKYGBgCgpWaXN1YWxpc2F0aW9uCj09PT09PT09PT09PT0KCkxldCdzIGhhdmUgYSBsb29rIGF0IHRoZSByZXN1bHRzLgoKSGVhdG1hcAotLS0tLS0tCgpIZWF0bWFwIG9mIHAtdmFsdWVzIGZvciBsaWdhbmQtcmVjZXB0b3IgcGFpcnMuCgpgYGB7ciBoZWF0bWFwfQp2aXNMaWdhbmRSZWNlcHRvcigKICAgIHNjZSwKICAgIHR5cGUgPSAicHZhbF9oZWF0bWFwIiwKICAgIHJlY2VwdG9yX3R5cGUgPSAiUk5BIgopCmBgYAoKRG90IHBsb3QKLS0tLS0tLS0KCkRvdCBwbG90IG9mIHAtdmFsdWVzIGZvciBsaWdhbmQtcmVjZXB0b3IgcGFpcnMuCgpgYGB7ciBkb3RwbG90fQp2aXNMaWdhbmRSZWNlcHRvcigKICAgIHNjZSwKICAgIHR5cGUgPSAicHZhbF9kb3RwbG90IiwKICAgIHJlY2VwdG9yX3R5cGUgPSAiUk5BIgopCmBgYAoKQ2x1c3RlciBuZXR3b3JrCi0tLS0tLS0tLS0tLS0tLQoKTmV0d29yayBvZiBpbnRlcmFjdGlvbnMgYmV0d2VlbiBjbHVzdGVycy4KCmBgYHtyIG5ldHdvcmt9CnZpc0xpZ2FuZFJlY2VwdG9yKAogICAgc2NlLAogICAgdHlwZSA9ICJncm91cF9uZXR3b3JrIiwKICAgIHJlY2VwdG9yX3R5cGUgPSAiUk5BIgopCmBgYAoKQ2x1c3RlciBoZWF0bWFwCi0tLS0tLS0tLS0tLS0tLQoKSGVhdG1hcCBvZiBpbnRlcmFjdGlvbnMgYmV0d2VlbiBjbHVzdGVycy4KCmBgYHtyIGNsdXN0ZXItbmV0d29ya30KdmlzTGlnYW5kUmVjZXB0b3IoCiAgICBzY2UsCiAgICB0eXBlID0gImdyb3VwX2hlYXRtYXAiLAogICAgcmVjZXB0b3JfdHlwZSA9ICJSTkEiCikKYGBgCgpMaWdhbmQtcmVjZXB0b3IgbmV0d29yawotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKTmV0d29yayBvZiBsaWdhbmRzIGFuZCByZWNlcHRvcnMuIEhlcmUgdGhlIG5vZGVzIGFyZSBsaWdhbmRzIGFuZCByZWNlcHRvcnMgYW5kIHRoZSBlZGdlcyBhcmUgaW50ZXJhY3Rpb25zIGJldHdlZW4gY2x1c3RlcnMuCgpgYGB7ciBsci1uZXR3b3JrfQp2aXNMaWdhbmRSZWNlcHRvcigKICAgIHNjZSwKICAgIHR5cGUgPSAibHJfbmV0d29yayIsCiAgICByZWNlcHRvcl90eXBlID0gIlJOQSIKKQpgYGAKClN1bW1hcnkgey51bm51bWJlcmVkfQo9PT09PT09CgpQYXJhbWV0ZXJzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLQoKVGhpcyB0YWJsZSBkZXNjcmliZXMgcGFyYW1ldGVycyB1c2VkIGFuZCBzZXQgaW4gdGhpcyBkb2N1bWVudC4KCmBgYHtyIHBhcmFtZXRlcnN9CnBhcmFtcyA8LSBsaXN0KAogICAgCikKcGFyYW1zIDwtIHRvSlNPTihwYXJhbXMsIHByZXR0eSA9IFRSVUUpCmthYmxlKGZyb21KU09OKHBhcmFtcykpCmBgYAoKT3V0cHV0IGZpbGVzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLS0tCgpUaGlzIHRhYmxlIGRlc2NyaWJlcyB0aGUgb3V0cHV0IGZpbGVzIHByb2R1Y2VkIGJ5IHRoaXMgZG9jdW1lbnQuIFJpZ2h0IGNsaWNrCmFuZCBfU2F2ZSBMaW5rIEFzLi4uXyB0byBkb3dubG9hZCB0aGUgcmVzdWx0cy4KCmBgYHtyIG91dHB1dH0Ka2FibGUoZGF0YS5mcmFtZSgKICAgIEZpbGUgPSBjKAogICAgICAgIGRvd25sb2FkX2xpbmsoInBhcmFtZXRlcnMuanNvbiIsIE9VVF9ESVIpCiAgICApLAogICAgRGVzY3JpcHRpb24gPSBjKAogICAgICAgICJQYXJhbWV0ZXJzIHNldCBhbmQgdXNlZCBpbiB0aGlzIGFuYWx5c2lzIgogICAgKQopKQpgYGAKClNlc3Npb24gaW5mb3JtYXRpb24gey51bm51bWJlcmVkfQotLS0tLS0tLS0tLS0tLS0tLS0tCg==