Last updated: 2020-11-24

Checks: 7 0

Knit directory: interaction-tools/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191213) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0333fe3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .drake/
    Ignored:    data/COMUNET/
    Ignored:    data/CellChat/
    Ignored:    data/ICELLNET/
    Ignored:    data/NicheNet/
    Ignored:    data/cellphonedb/
    Ignored:    data/celltalker/
    Ignored:    output/14-CellChat.Rmd/
    Ignored:    output/15-talklr.Rmd/
    Ignored:    output/16-CiteFuse.Rmd/
    Ignored:    output/17-scTHI.Rmd/
    Ignored:    output/18-celltalker.Rmd/
    Ignored:    output/index.Rmd/
    Ignored:    renv/library/
    Ignored:    renv/python/
    Ignored:    renv/staging/

Unstaged changes:
    Modified:   _drake.R
    Modified:   output/11-CellPhoneDB.Rmd/count_network.txt
    Modified:   output/11-CellPhoneDB.Rmd/dotplot.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_counts.png
    Modified:   output/11-CellPhoneDB.Rmd/heatmap_logcounts.png
    Modified:   output/11-CellPhoneDB.Rmd/interactions_count.txt
    Modified:   output/11-CellPhoneDB.Rmd/pvalues.txt
    Modified:   output/11-CellPhoneDB.Rmd/significant_means.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/17-scTHI.Rmd) and HTML (docs/17-scTHI.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 38ee322 Luke Zappia 2020-11-10 Add scTHI to drake
Rmd 89d2503 Luke Zappia 2020-11-10 Add scTHI tutorial
Rmd 7ff056a Luke Zappia 2020-11-10 Add scTHI document

# Setup document
source(here::here("code", "setup.R"))

# Function dependencies
invisible(drake::readd(download_link))

Introduction

In this document we are going to run through the example analysis for the scTHI package and have a look at the output it produces. More information about scTHI can be found at https://github.com/miccec/scTHI.

library("scTHI")

Chunk time: 0.15 secs

1 Input

1.1 Expression

The scTHI tutorial contains a pre-processed dataset from a glioma sample. The sample has been filtered, transformed to log TPM and quantile normalised.

data("H3K27", package = "scTHI.data")

pander(as.matrix(H3K27[1:5, 1:5]))
Table continues below
  BCH836-P01-A03 BCH836-P01-A04 BCH836-P01-A06
A1BG 0.7119 0 2.915
A1BG-AS1 1.3 6.564 0
A1CF 0 0 0
A2M 0 0 0
A2M-AS1 0 0 0
  BCH836-P01-A08 BCH836-P01-A11
A1BG 0 1.291
A1BG-AS1 0 6.152
A1CF 0 0
A2M 0 0
A2M-AS1 0 0

Chunk time: 2.81 secs

The matrix has 21673 rows (pairs) and 527 columns.

1.2 Metadata

We are also provided with a data frame of metadata information.

data("H3K27.meta", package = "scTHI.data")

skim(H3K27.meta)
Data summary
Name H3K27.meta
Number of rows 527
Number of columns 9
_______________________
Column type frequency:
character 9
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Sample 0 1.00 6 6 0 1 0
GenesExpressed 0 1.00 4 5 0 503 0
HousekeepingGeneExpression 0 1.00 9 11 0 527 0
Type 0 1.00 6 15 0 4 0
Cellcycle 89 0.83 10 12 0 438 0
OPC.variable 89 0.83 8 12 0 438 0
OC.like 89 0.83 9 12 0 438 0
AC.like 89 0.83 9 12 0 438 0
OPC.like 89 0.83 9 12 0 438 0

Chunk time: 0.16 secs

The most important column here contains the cell type labels.

table(H3K27.meta$Type)

         Filter     Immune cell       Malignant Oligodendrocyte 
              2              53             438              34 

Chunk time: 0 secs

2 Selection

For the tutorial we only use the immune cells and a subset of the malignant cells.

malignant <- rownames(H3K27.meta)[H3K27.meta$Type == "Malignant"][1:100]
immune    <- rownames(H3K27.meta)[H3K27.meta$Type == "Immune cell"]

Chunk time: 0.01 secs

3 Testing

We now pass the input to the scoring function which uses an internal database of ligand-receptor pairs. The score considers the average expression of each pair but also the percentage of cells that express each ligand/receptor. Genes are only considered to be expressed if they are in the top 10 percent of genes in a cell. A p-value for each interaction is computed using a permutation test.

output <- scTHI_score(
    expMat          = H3K27,
    cellCusterA     = malignant,
    cellCusterB     = immune,
    cellCusterAName = "Malignant",
    cellCusterBName = "Immune",
    topRank         = 10,
    PValue          = TRUE,
    pvalueCutoff    = 0.05,
    nPermu          = 10,
    ncore           = 1
)
[1] "Computed ranked values for partner A"
[1] "Computed ranked values for partner B"
 [1] "RPS19_C5AR1"      "THY1_ITGAX:ITGB2" "B2M_HLA-F"        "PTN_PLXNB2"      
 [5] "B2M_LILRB1"       "PSAP_LRP1"        "SERPINE2_LRP1"    "KLRC2_HLA-E"     
 [9] "APP_CD74"         "VCAN_ITGB1"       "CALR_LRP1"        "HLA-A_APLP2"     
[13] "THY1_ITGB2:ITGAM" "VCAN_TLR2"        "HLA-A_LILRB1"     "CHAD_ITGB1"      
[17] "APP_LRP1"         "APP_NCSTN"       

Chunk time: 40.87 secs

The output is a list with 4 items: result, expMat, Malignant and Immune

Most of these are the inputs we provided but the scores are available in the result item.

skim(output$result)
Data summary
Name output$result
Number of rows 18
Number of columns 11
_______________________
Column type frequency:
character 6
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
interationPair 0 1 8 16 0 18 0
interactionType 0 1 6 7 0 2 0
partnerA 0 1 3 8 0 12 0
partnerB 0 1 4 11 0 13 0
expValueA_Malignant 0 1 3 4 0 11 0
expValueB_Immune 0 1 3 11 0 13 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
rnkPartnerA_Malignant 0 1 0.77 0.18 0.53 0.57 0.80 0.97 0.99 ▇▂▂▃▇
rnkPartnerB_Immune 0 1 0.70 0.15 0.57 0.60 0.62 0.77 1.00 ▇▂▁▁▂
SCORE 0 1 0.74 0.10 0.55 0.70 0.75 0.79 0.94 ▅▁▇▅▂
pValue 0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ▁▁▇▁▁
FDR 0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ▁▁▇▁▁

Chunk time: 0.09 secs

4 Visualisation

4.1 Scores

We can visualise a bar plot of the scores for the significant pairs.

scTHI_plotResult(
    scTHIresult = output,
    cexNames    = 0.7,
    plotType    = "score"
)

Version Author Date
38ee322 Luke Zappia 2020-11-10

Chunk time: 0.15 secs

4.2 Expression

This bar plot shows the percentage of cells in each cluster that express each partner in the interaction.

scTHI_plotResult(
    scTHIresult = output,
    cexNames    = 0.7,
    plotType    = "pair"
)

Version Author Date
38ee322 Luke Zappia 2020-11-10

Chunk time: 0.1 secs

4.3 t-SNE

We can also look at where cells lie in a t-SNE embedding.

4.3.1 Cluster

Here the cells are coloured by the selected clusters.

output <- scTHI_runTsne(scTHIresult = output)

scTHI_plotCluster(
    scTHIresult = output,
    cexPoint    = 0.8,
    legendPos   = "bottomleft"
)

Version Author Date
38ee322 Luke Zappia 2020-11-10

Chunk time: 12.06 secs

4.3.2 Interactions

We can also plot the expression of specific pairs we are interested in.

scTHI_plotPairs(
    scTHIresult       = output,
    cexPoint          = 0.8,
    interactionToplot = "THY1_ITGAX:ITGB2"
)

Version Author Date
38ee322 Luke Zappia 2020-11-10

Chunk time: 0.2 secs

Summary

Parameters

This table describes parameters used and set in this document.

params <- list(
    
)
params <- toJSON(params, pretty = TRUE)
kable(fromJSON(params))

Chunk time: 0.01 secs

Output files

This table describes the output files produced by this document. Right click and Save Link As… to download the results.

kable(data.frame(
    File = c(
        download_link("parameters.json", OUT_DIR)
    ),
    Description = c(
        "Parameters set and used in this analysis"
    )
))
File Description
parameters.json Parameters set and used in this analysis

Chunk time: 0.01 secs

Session information


sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.0 (2020-04-24)
 os       macOS Catalina 10.15.7      
 system   x86_64, darwin17.0          
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Europe/Berlin               
 date     2020-11-24                  

─ Packages ───────────────────────────────────────────────────────────────────
 ! package      * version date       lib source            
 P assertthat     0.2.1   2019-03-21 [?] CRAN (R 4.0.0)    
 P backports      1.1.6   2020-04-05 [?] CRAN (R 4.0.0)    
 P base64enc      0.1-3   2015-07-28 [?] CRAN (R 4.0.0)    
 P base64url      1.4     2018-05-14 [?] standard (@1.4)   
 P BiocParallel   1.22.0  2020-04-27 [?] Bioconductor      
 P broom          0.5.6   2020-04-20 [?] CRAN (R 4.0.0)    
 P cellranger     1.1.0   2016-07-27 [?] standard (@1.1.0) 
 P cli            2.0.2   2020-02-28 [?] CRAN (R 4.0.0)    
 P colorspace     1.4-1   2019-03-18 [?] standard (@1.4-1) 
 P conflicted   * 1.0.4   2019-06-21 [?] standard (@1.0.4) 
 P crayon         1.3.4   2017-09-16 [?] CRAN (R 4.0.0)    
 P DBI            1.1.0   2019-12-15 [?] CRAN (R 4.0.0)    
 P dbplyr         1.4.3   2020-04-19 [?] CRAN (R 4.0.0)    
 P digest         0.6.25  2020-02-23 [?] CRAN (R 4.0.0)    
 P dplyr        * 0.8.5   2020-03-07 [?] CRAN (R 4.0.0)    
 P drake          7.12.0  2020-03-25 [?] CRAN (R 4.0.0)    
 P ellipsis       0.3.0   2019-09-20 [?] CRAN (R 4.0.0)    
 P evaluate       0.14    2019-05-28 [?] standard (@0.14)  
 P fansi          0.4.1   2020-01-08 [?] CRAN (R 4.0.0)    
 P filelock       1.0.2   2018-10-05 [?] CRAN (R 4.0.0)    
 P forcats      * 0.5.0   2020-03-01 [?] CRAN (R 4.0.0)    
 P fs           * 1.4.1   2020-04-04 [?] CRAN (R 4.0.0)    
 P generics       0.0.2   2018-11-29 [?] standard (@0.0.2) 
 P ggplot2      * 3.3.0   2020-03-05 [?] CRAN (R 4.0.0)    
 P git2r          0.27.1  2020-05-03 [?] CRAN (R 4.0.0)    
 P glue         * 1.4.0   2020-04-03 [?] CRAN (R 4.0.0)    
 P gtable         0.3.0   2019-03-25 [?] standard (@0.3.0) 
 P haven          2.2.0   2019-11-08 [?] standard (@2.2.0) 
 P here         * 0.1     2017-05-28 [?] standard (@0.1)   
 P highr          0.8     2019-03-20 [?] standard (@0.8)   
 P hms            0.5.3   2020-01-08 [?] CRAN (R 4.0.0)    
 P htmltools      0.5.0   2020-06-16 [?] CRAN (R 4.0.2)    
 P httpuv         1.5.2   2019-09-11 [?] standard (@1.5.2) 
 P httr           1.4.1   2019-08-05 [?] standard (@1.4.1) 
 P igraph         1.2.5   2020-03-19 [?] CRAN (R 4.0.0)    
 P jsonlite     * 1.6.1   2020-02-02 [?] CRAN (R 4.0.0)    
 P knitr        * 1.28    2020-02-06 [?] CRAN (R 4.0.0)    
 P later          1.0.0   2019-10-04 [?] standard (@1.0.0) 
 P lattice        0.20-41 2020-04-02 [?] CRAN (R 4.0.0)    
 P lifecycle      0.2.0   2020-03-06 [?] CRAN (R 4.0.0)    
 P lubridate      1.7.8   2020-04-06 [?] CRAN (R 4.0.0)    
 P magrittr       1.5     2014-11-22 [?] CRAN (R 4.0.0)    
 P Matrix         1.2-18  2019-11-27 [?] standard (@1.2-18)
 P memoise        1.1.0   2017-04-21 [?] standard (@1.1.0) 
 P modelr         0.1.7   2020-04-30 [?] CRAN (R 4.0.0)    
 P munsell        0.5.0   2018-06-12 [?] standard (@0.5.0) 
 P nlme           3.1-147 2020-04-13 [?] CRAN (R 4.0.0)    
 P pander       * 0.6.3   2018-11-06 [?] CRAN (R 4.0.0)    
 P pillar         1.4.4   2020-05-05 [?] CRAN (R 4.0.0)    
 P pkgconfig      2.0.3   2019-09-22 [?] CRAN (R 4.0.0)    
 P prettyunits    1.1.1   2020-01-24 [?] CRAN (R 4.0.0)    
 P progress       1.2.2   2019-05-16 [?] CRAN (R 4.0.0)    
 P promises       1.1.0   2019-10-04 [?] standard (@1.1.0) 
 P purrr        * 0.3.4   2020-04-17 [?] CRAN (R 4.0.0)    
 P R6             2.4.1   2019-11-12 [?] CRAN (R 4.0.0)    
 P Rcpp           1.0.4.6 2020-04-09 [?] CRAN (R 4.0.0)    
 P readr        * 1.3.1   2018-12-21 [?] standard (@1.3.1) 
 P readxl         1.3.1   2019-03-13 [?] standard (@1.3.1) 
 P renv           0.12.0  2020-08-28 [?] CRAN (R 4.0.2)    
 P repr           1.1.0   2020-01-28 [?] CRAN (R 4.0.0)    
 P reprex         0.3.0   2019-05-16 [?] standard (@0.3.0) 
 P reticulate     1.16    2020-05-27 [?] CRAN (R 4.0.2)    
 P rlang          0.4.6   2020-05-02 [?] CRAN (R 4.0.0)    
 P rmarkdown      2.1     2020-01-20 [?] CRAN (R 4.0.0)    
 P rprojroot      1.3-2   2018-01-03 [?] CRAN (R 4.0.0)    
 P rstudioapi     0.11    2020-02-07 [?] CRAN (R 4.0.0)    
   Rtsne          0.15    2018-11-10 [1] CRAN (R 4.0.0)    
 P rvest          0.3.5   2019-11-08 [?] standard (@0.3.5) 
 P scales         1.1.0   2019-11-18 [?] standard (@1.1.0) 
 P scTHI        * 1.0.0   2020-04-27 [?] Bioconductor      
 P sessioninfo    1.1.1   2018-11-05 [?] CRAN (R 4.0.0)    
 P skimr        * 2.1.1   2020-04-16 [?] CRAN (R 4.0.0)    
 P storr          1.2.1   2018-10-18 [?] standard (@1.2.1) 
 P stringi        1.4.6   2020-02-17 [?] CRAN (R 4.0.0)    
 P stringr      * 1.4.0   2019-02-10 [?] CRAN (R 4.0.0)    
 P tibble       * 3.0.1   2020-04-20 [?] CRAN (R 4.0.0)    
 P tidyr        * 1.0.3   2020-05-07 [?] CRAN (R 4.0.0)    
 P tidyselect     1.0.0   2020-01-27 [?] CRAN (R 4.0.0)    
 P tidyverse    * 1.3.0   2019-11-21 [?] standard (@1.3.0) 
 P txtq           0.2.0   2019-10-15 [?] standard (@0.2.0) 
 P vctrs          0.2.4   2020-03-10 [?] CRAN (R 4.0.0)    
 P whisker        0.4     2019-08-28 [?] standard (@0.4)   
 P withr          2.2.0   2020-04-20 [?] CRAN (R 4.0.0)    
 P workflowr      1.6.2   2020-04-30 [?] CRAN (R 4.0.0)    
 P xfun           0.13    2020-04-13 [?] CRAN (R 4.0.0)    
 P xml2           1.3.2   2020-04-23 [?] CRAN (R 4.0.0)    
 P yaml           2.2.1   2020-02-01 [?] CRAN (R 4.0.0)    

[1] /Users/luke.zappia/Documents/Projects/interaction-tools/renv/library/R-4.0/x86_64-apple-darwin17.0
[2] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpOqMPdA/renv-system-library
[3] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/RtmpqYMqtc/renv-system-library
[4] /private/var/folders/rj/60lhr791617422kqvh0r4vy40000gn/T/Rtmp7wtwHE/renv-system-library

 P ── Loaded and on-disk path mismatch.

Chunk time: 0.16 secs

LS0tCnRpdGxlOiAic2NUSEkgZXhhbXBsZSIKb3V0cHV0OiB3b3JrZmxvd3I6OndmbG93X2h0bWwKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgpgYGB7ciBzZXR1cCwgY2FjaGUgPSBGQUxTRX0KIyBTZXR1cCBkb2N1bWVudApzb3VyY2UoaGVyZTo6aGVyZSgiY29kZSIsICJzZXR1cC5SIikpCgojIEZ1bmN0aW9uIGRlcGVuZGVuY2llcwppbnZpc2libGUoZHJha2U6OnJlYWRkKGRvd25sb2FkX2xpbmspKQpgYGAKCkludHJvZHVjdGlvbiB7LnVubnVtYmVyZWR9Cj09PT09PT09PT09PQoKSW4gdGhpcyBkb2N1bWVudCB3ZSBhcmUgZ29pbmcgdG8gcnVuIHRocm91Z2ggdGhlIGV4YW1wbGUgYW5hbHlzaXMgZm9yIHRoZSAqKnNjVEhJKiogcGFja2FnZSBhbmQgaGF2ZSBhIGxvb2sgYXQgdGhlIG91dHB1dCBpdCBwcm9kdWNlcy4KTW9yZSBpbmZvcm1hdGlvbiBhYm91dCAqKnNjVEhJKiogY2FuIGJlIGZvdW5kIGF0IGh0dHBzOi8vZ2l0aHViLmNvbS9taWNjZWMvc2NUSEkuCgpgYGB7ciBsaWJyYXJpZXN9CmxpYnJhcnkoInNjVEhJIikKYGBgCgpJbnB1dAo9PT09PQoKRXhwcmVzc2lvbgotLS0tLS0tLS0tCgpUaGUgKipzY1RISSoqIHR1dG9yaWFsIGNvbnRhaW5zIGEgcHJlLXByb2Nlc3NlZCBkYXRhc2V0IGZyb20gYSBnbGlvbWEgc2FtcGxlLgpUaGUgc2FtcGxlIGhhcyBiZWVuIGZpbHRlcmVkLCB0cmFuc2Zvcm1lZCB0byBsb2cgVFBNIGFuZCBxdWFudGlsZSBub3JtYWxpc2VkLgoKYGBge3IgaW5wdXQtZXhwcmVzc2lvbn0KZGF0YSgiSDNLMjciLCBwYWNrYWdlID0gInNjVEhJLmRhdGEiKQoKcGFuZGVyKGFzLm1hdHJpeChIM0syN1sxOjUsIDE6NV0pKQpgYGAKClRoZSBtYXRyaXggaGFzICoqYHIgbnJvdyhIM0syNylgKiogcm93cyAocGFpcnMpIGFuZCAqKmByIG5jb2woSDNLMjcpYCoqIGNvbHVtbnMuCgpNZXRhZGF0YQotLS0tLS0tLQoKV2UgYXJlIGFsc28gcHJvdmlkZWQgd2l0aCBhIGRhdGEgZnJhbWUgb2YgbWV0YWRhdGEgaW5mb3JtYXRpb24uCgpgYGB7ciBpbnB1dC1tZXRhZGF0YX0KZGF0YSgiSDNLMjcubWV0YSIsIHBhY2thZ2UgPSAic2NUSEkuZGF0YSIpCgpza2ltKEgzSzI3Lm1ldGEpCmBgYAoKVGhlIG1vc3QgaW1wb3J0YW50IGNvbHVtbiBoZXJlIGNvbnRhaW5zIHRoZSBjZWxsIHR5cGUgbGFiZWxzLgoKYGBge3IgaW5wdXQtdHlwZXN9CnRhYmxlKEgzSzI3Lm1ldGEkVHlwZSkKYGBgCgpTZWxlY3Rpb24KPT09PT09PT09CgpGb3IgdGhlIHR1dG9yaWFsIHdlIG9ubHkgdXNlIHRoZSBpbW11bmUgY2VsbHMgYW5kIGEgc3Vic2V0IG9mIHRoZSBtYWxpZ25hbnQgY2VsbHMuCgpgYGB7ciBzZWxlY3R9Cm1hbGlnbmFudCA8LSByb3duYW1lcyhIM0syNy5tZXRhKVtIM0syNy5tZXRhJFR5cGUgPT0gIk1hbGlnbmFudCJdWzE6MTAwXQppbW11bmUgICAgPC0gcm93bmFtZXMoSDNLMjcubWV0YSlbSDNLMjcubWV0YSRUeXBlID09ICJJbW11bmUgY2VsbCJdCmBgYAoKVGVzdGluZwo9PT09PT09CgpXZSBub3cgcGFzcyB0aGUgaW5wdXQgdG8gdGhlIHNjb3JpbmcgZnVuY3Rpb24gd2hpY2ggdXNlcyBhbiBpbnRlcm5hbCBkYXRhYmFzZSBvZiBsaWdhbmQtcmVjZXB0b3IgcGFpcnMuClRoZSBzY29yZSBjb25zaWRlcnMgdGhlIGF2ZXJhZ2UgZXhwcmVzc2lvbiBvZiBlYWNoIHBhaXIgYnV0IGFsc28gdGhlIHBlcmNlbnRhZ2Ugb2YgY2VsbHMgdGhhdCBleHByZXNzIGVhY2ggbGlnYW5kL3JlY2VwdG9yLgpHZW5lcyBhcmUgb25seSBjb25zaWRlcmVkIHRvIGJlIGV4cHJlc3NlZCBpZiB0aGV5IGFyZSBpbiB0aGUgdG9wIDEwIHBlcmNlbnQgb2YgZ2VuZXMgaW4gYSBjZWxsLgpBIHAtdmFsdWUgZm9yIGVhY2ggaW50ZXJhY3Rpb24gaXMgY29tcHV0ZWQgdXNpbmcgYSBwZXJtdXRhdGlvbiB0ZXN0LgoKYGBge3Igc2NvcmluZ30Kb3V0cHV0IDwtIHNjVEhJX3Njb3JlKAogICAgZXhwTWF0ICAgICAgICAgID0gSDNLMjcsCiAgICBjZWxsQ3VzdGVyQSAgICAgPSBtYWxpZ25hbnQsCiAgICBjZWxsQ3VzdGVyQiAgICAgPSBpbW11bmUsCiAgICBjZWxsQ3VzdGVyQU5hbWUgPSAiTWFsaWduYW50IiwKICAgIGNlbGxDdXN0ZXJCTmFtZSA9ICJJbW11bmUiLAogICAgdG9wUmFuayAgICAgICAgID0gMTAsCiAgICBQVmFsdWUgICAgICAgICAgPSBUUlVFLAogICAgcHZhbHVlQ3V0b2ZmICAgID0gMC4wNSwKICAgIG5QZXJtdSAgICAgICAgICA9IDEwLAogICAgbmNvcmUgICAgICAgICAgID0gMQopCmBgYAoKVGhlIG91dHB1dCBpcyBhIGxpc3Qgd2l0aCAqKmByIGxlbmd0aChvdXRwdXQpYCoqIGl0ZW1zOiAKYHIgZ2x1ZV9jb2xsYXBzZShnbHVlKCIqKntuYW1lcyhvdXRwdXQpfSoqIiksIHNlcCA9ICIsICIsIGxhc3QgPSAiIGFuZCAiKWAKCk1vc3Qgb2YgdGhlc2UgYXJlIHRoZSBpbnB1dHMgd2UgcHJvdmlkZWQgYnV0IHRoZSBzY29yZXMgYXJlIGF2YWlsYWJsZSBpbiB0aGUKKipyZXN1bHQqKiBpdGVtLgoKYGBge3IgcmVzdWx0c30Kc2tpbShvdXRwdXQkcmVzdWx0KQpgYGAKClZpc3VhbGlzYXRpb24KPT09PT09PT09PT09PQoKU2NvcmVzCi0tLS0tLQoKV2UgY2FuIHZpc3VhbGlzZSBhIGJhciBwbG90IG9mIHRoZSBzY29yZXMgZm9yIHRoZSBzaWduaWZpY2FudCBwYWlycy4KCmBgYHtyIHZpcy1zY29yZXN9CnNjVEhJX3Bsb3RSZXN1bHQoCiAgICBzY1RISXJlc3VsdCA9IG91dHB1dCwKICAgIGNleE5hbWVzICAgID0gMC43LAogICAgcGxvdFR5cGUgICAgPSAic2NvcmUiCikKYGBgCgpFeHByZXNzaW9uCi0tLS0tLS0tLS0KClRoaXMgYmFyIHBsb3Qgc2hvd3MgdGhlIHBlcmNlbnRhZ2Ugb2YgY2VsbHMgaW4gZWFjaCBjbHVzdGVyIHRoYXQgZXhwcmVzcyBlYWNoIHBhcnRuZXIgaW4gdGhlIGludGVyYWN0aW9uLgoKYGBge3IgdmlzLWV4cHJlc3Npb259CnNjVEhJX3Bsb3RSZXN1bHQoCiAgICBzY1RISXJlc3VsdCA9IG91dHB1dCwKICAgIGNleE5hbWVzICAgID0gMC43LAogICAgcGxvdFR5cGUgICAgPSAicGFpciIKKQpgYGAKCnQtU05FCi0tLS0tCgpXZSBjYW4gYWxzbyBsb29rIGF0IHdoZXJlIGNlbGxzIGxpZSBpbiBhIHQtU05FIGVtYmVkZGluZy4KCiMjIyBDbHVzdGVyCgpIZXJlIHRoZSBjZWxscyBhcmUgY29sb3VyZWQgYnkgdGhlIHNlbGVjdGVkIGNsdXN0ZXJzLgoKYGBge3IgdmlzLXRzbmUtY2x1c3Rlcn0Kb3V0cHV0IDwtIHNjVEhJX3J1blRzbmUoc2NUSElyZXN1bHQgPSBvdXRwdXQpCgpzY1RISV9wbG90Q2x1c3RlcigKICAgIHNjVEhJcmVzdWx0ID0gb3V0cHV0LAogICAgY2V4UG9pbnQgICAgPSAwLjgsCiAgICBsZWdlbmRQb3MgICA9ICJib3R0b21sZWZ0IgopCmBgYAoKIyMjIEludGVyYWN0aW9ucwoKV2UgY2FuIGFsc28gcGxvdCB0aGUgZXhwcmVzc2lvbiBvZiBzcGVjaWZpYyBwYWlycyB3ZSBhcmUgaW50ZXJlc3RlZCBpbi4KCmBgYHtyIHZpcy10c25lLWludGVyYWN0aW9ufQpzY1RISV9wbG90UGFpcnMoCiAgICBzY1RISXJlc3VsdCAgICAgICA9IG91dHB1dCwKICAgIGNleFBvaW50ICAgICAgICAgID0gMC44LAogICAgaW50ZXJhY3Rpb25Ub3Bsb3QgPSAiVEhZMV9JVEdBWDpJVEdCMiIKKQpgYGAKClN1bW1hcnkgey51bm51bWJlcmVkfQo9PT09PT09CgpQYXJhbWV0ZXJzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLQoKVGhpcyB0YWJsZSBkZXNjcmliZXMgcGFyYW1ldGVycyB1c2VkIGFuZCBzZXQgaW4gdGhpcyBkb2N1bWVudC4KCmBgYHtyIHBhcmFtZXRlcnN9CnBhcmFtcyA8LSBsaXN0KAogICAgCikKcGFyYW1zIDwtIHRvSlNPTihwYXJhbXMsIHByZXR0eSA9IFRSVUUpCmthYmxlKGZyb21KU09OKHBhcmFtcykpCmBgYAoKT3V0cHV0IGZpbGVzIHsudW5udW1iZXJlZH0KLS0tLS0tLS0tLS0tCgpUaGlzIHRhYmxlIGRlc2NyaWJlcyB0aGUgb3V0cHV0IGZpbGVzIHByb2R1Y2VkIGJ5IHRoaXMgZG9jdW1lbnQuIFJpZ2h0IGNsaWNrCmFuZCBfU2F2ZSBMaW5rIEFzLi4uXyB0byBkb3dubG9hZCB0aGUgcmVzdWx0cy4KCmBgYHtyIG91dHB1dH0Ka2FibGUoZGF0YS5mcmFtZSgKICAgIEZpbGUgPSBjKAogICAgICAgIGRvd25sb2FkX2xpbmsoInBhcmFtZXRlcnMuanNvbiIsIE9VVF9ESVIpCiAgICApLAogICAgRGVzY3JpcHRpb24gPSBjKAogICAgICAgICJQYXJhbWV0ZXJzIHNldCBhbmQgdXNlZCBpbiB0aGlzIGFuYWx5c2lzIgogICAgKQopKQpgYGAKClNlc3Npb24gaW5mb3JtYXRpb24gey51bm51bWJlcmVkfQotLS0tLS0tLS0tLS0tLS0tLS0tCg==