VelocityKernel vs. RealTimeKernel - TSI

VelocityKernel vs. RealTimeKernel - TSI#

Library imports#

%load_ext autoreload
%autoreload 2
import sys

import pandas as pd

import matplotlib.pyplot as plt
import mplscience
import seaborn as sns

from cr2.analysis import plot_tsi

sys.path.extend(["../../../", "."])
from paths import DATA_DIR, FIG_DIR  # isort: skip  # noqa: E402
Global seed set to 0

General settings#

SAVE_FIGURES = False
if SAVE_FIGURES:
    (FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm").mkdir(parents=True, exist_ok=True)

FIGURE_FORMAT = "pdf"

Constants#

Data loading#

tsi_cr1_full = pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-full_data-vk.csv")
tsi_cr1_full.head()
number_of_macrostates identified_terminal_states optimal_identification
0 20 4 11
1 19 4 11
2 18 4 11
3 17 4 11
4 16 4 11
tsi_cr1_subset = pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-subsetted_data-vk.csv")
tsi_cr1_subset.head()
number_of_macrostates identified_terminal_states optimal_identification
0 10 4 4
1 9 4 4
2 8 4 4
3 7 4 4
4 6 4 4
tsi_cr2_full = pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-full_data-rtk.csv")
tsi_cr2_full.head()
number_of_macrostates identified_terminal_states optimal_identification
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
4 5 5 5
tsi_cr2_subset = pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-subsetted_data-rtk.csv")
tsi_cr2_subset.head()
number_of_macrostates identified_terminal_states optimal_identification
0 10 4 4
1 9 4 4
2 8 4 4
3 7 4 4
4 6 4 4

Data preprocessing#

tsi_cr1_full["method"] = "CellRank 1"
tsi_cr1_subset["method"] = "CellRank 1"

tsi_cr2_full["method"] = "CellRank 2"
tsi_cr2_subset["method"] = "CellRank 2"

df_full = pd.concat([tsi_cr1_full, tsi_cr2_full])
df_subset = pd.concat([tsi_cr1_subset, tsi_cr2_subset])

Plotting#

palette = {"CellRank 1": "#0173b2", "CellRank 2": "#DE8F05", "Optimal identification": "#000000"}

if SAVE_FIGURES:
    fname = FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"tsi_ranking-full_data.{FIGURE_FORMAT}"
else:
    fname = None

with mplscience.style_context():
    sns.set_style(style="whitegrid")
    plot_tsi(df=df_full, palette=palette, fname=fname)
    plt.show()
../../_images/f09584b4cedd318e08888edd83a513bcde1ec0ac516933565e991625e0d531a9.png
palette = {"CellRank 1": "#0173b2", "CellRank 2": "#DE8F05", "Optimal identification": "#000000"}

if SAVE_FIGURES:
    fname = FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"tsi_ranking-subsetted_data.{FIGURE_FORMAT}"
else:
    fname = None

with mplscience.style_context():
    sns.set_style(style="whitegrid")
    plot_tsi(df=df_subset, palette=palette, fname=fname)
    plt.show()
../../_images/7979d8eb6738bd2c8eec4c41b8a54a73d3f2f18b80440c7d80a1dece58850c06.png