Pharyngeal endoderm development analysis with RealTimeKernel#
Import packages#
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mplscience
import seaborn as sns
import cellrank as cr
import scanpy as sc
import scvelo as scv
import wot
from anndata import AnnData
from cr2 import get_state_purity, plot_state_purity, running_in_notebook
sys.path.extend(["../../../", "."])
from paths import DATA_DIR, FIG_DIR # isort: skip # noqa: E402
Global seed set to 0
General settings#
sc.settings.verbosity = 2
cr.settings.verbosity = 4
scv.settings.verbosity = 3
scv.settings.set_figure_params("scvelo", dpi_save=400, dpi=80, transparent=True, fontsize=20, color_map="viridis")
SAVE_FIGURES = False
if SAVE_FIGURES:
(FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm").mkdir(parents=True, exist_ok=True)
FIGURE_FORMAT = "pdf"
SHOW_COLORBAR = not SAVE_FIGURES
(DATA_DIR / "pharyngeal_endoderm" / "results").mkdir(parents=True, exist_ok=True)
Constants#
# fmt: off
S_GENES = [
"Mcm5", "Pcna", "Tyms", "Fen1", "Mcm2", "Mcm4", "Rrm1", "Ung", "Gins2",
"Mcm6", "Cdca7", "Dtl", "Prim1", "Uhrf1", "Mlf1ip", "Hells", "Rfc2",
"Rpa2", "Nasp", "Rad51ap1", "Gmnn", "Wdr76", "Slbp", "Ccne2", "Ubr7",
"Pold3", "Msh2", "Atad2", "Rad51", "Rrm2", "Cdc45", "Cdc6", "Exo1",
"Tipin", "Dscc1", "Blm", "Casp8ap2", "Usp1", "Clspn", "Pola1", "Chaf1b",
"Brip1", "E2f8",
]
G2M_GENES = [
"Hmgb2", "Cdk1", "Nusap1", "Ube2c", "Birc5", "Tpx2", "Top2a", "Ndc80",
"Cks2", "Nuf2", "Cks1b", "Mki67", "Tmpo", "Cenpf", "Tacc3", "Fam64a",
"Smc4", "Ccnb2", "Ckap2l", "Ckap2", "Aurkb", "Bub1", "Kif11", "Anp32e",
"Tubb4b", "Gtse1", "Kif20b", "Hjurp", "Cdca3", "Hn1", "Cdc20", "Ttk",
"Cdc25c", "Kif2c", "Rangap1", "Ncapd2", "Dlgap5", "Cdca2", "Cdca8",
"Ect2", "Kif23", "Hmmr", "Aurka", "Psrc1", "Anln", "Lbr", "Ckap5",
"Cenpe", "Ctcf", "Nek2", "G2e3", "Gas2l3", "Cbx5", "Cenpa",
]
# fmt: on
Data loading#
adata = sc.read(DATA_DIR / "pharyngeal_endoderm" / "raw" / "adata_pharynx.h5ad")
adata.obsm["X_umap"] = adata.obs[["UMAP1", "UMAP2"]].values
adata.obs["day"] = adata.obs["day_str"].astype(float)
adata.obs = adata.obs[["cluster_name", "day", "is_doublet"]]
adata.obs["cluster_fine"] = (
pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "raw" / "cluster_data.csv", index_col=0)
.loc[adata.obs_names, "res.1"]
.values
)
adata.obs["cluster_fine"] = adata.obs["cluster_fine"].astype(str).astype("category")
adata = adata[adata.obs["cluster_fine"].isin(["2", "4", "9", "12", "25", "26"]), :].copy()
adata.uns["cluster_name_colors"] = ["#023fa5", "#bec1d4", "#b5bbe3", "#e07b91", "#11c638"]
adata
AnnData object with n_obs × n_vars = 11073 × 27998
obs: 'cluster_name', 'day', 'is_doublet', 'cluster_fine'
uns: 'cluster_name_colors'
obsm: 'X_umap'
mouse_tfs = (
pd.read_csv(DATA_DIR / "generic" / "mouse_tfs.tsv", sep="\t", header=None)
.rename(columns={0: "Ensemble ID", 1: "Gene ID"})["Gene ID"]
.tolist()
)
Data preprocessing#
sc.pp.highly_variable_genes(adata)
extracting highly variable genes
finished (0:00:03)
sc.tl.pca(adata)
sc.pp.neighbors(adata, n_pcs=30, n_neighbors=30)
computing PCA
on highly variable genes
with n_comps=50
finished (0:00:01)
computing neighbors
using 'X_pca' with n_pcs = 30
finished (0:03:01)
sc.tl.umap(adata)
pd.DataFrame(adata.obsm["X_umap"], index=adata.obs_names, columns=["umap_1", "umap_2"]).to_csv(
DATA_DIR / "pharyngeal_endoderm" / "processed" / "umap_subsetted_data.csv"
)
computing UMAP
finished (0:00:18)
if running_in_notebook():
scv.pl.scatter(
adata, basis="umap", c="cluster_name", title="", dpi=250, legend_fontsize=12, legend_fontweight="normal"
)
if SAVE_FIGURES:
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(adata, basis="umap", c="cluster_name", legend_loc=False, title="", ax=ax)
fig.savefig(
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"umap_colored_by_cell_type_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(adata, basis="umap", c="day", legend_loc=False, colorbar=SHOW_COLORBAR, title="", ax=ax)
fig.savefig(
FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"umap_colored_by_day_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
RealTimeKernel analysis#
if not (DATA_DIR / "pharyngeal_endoderm" / "tmaps_subsetted_data").exists():
ot_model = wot.ot.OTModel(adata)
ot_model.compute_all_transport_maps(tmap_out=DATA_DIR / "pharyngeal_endoderm" / "tmaps_subsetted_data" / "tmaps")
adata.obs["day"] = adata.obs["day"].astype("category")
rtk = cr.kernels.RealTimeKernel.from_wot(
adata, path=DATA_DIR / "pharyngeal_endoderm" / "tmaps_subsetted_data", time_key="day"
)
rtk.compute_transition_matrix(
growth_iters=3, growth_rate_key="growth_rate_init", self_transitions="all", conn_weight=0.1
)
WARNING: Your filename has more than two extensions: ['.5_11', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
WARNING: Your filename has more than two extensions: ['.5_11', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
WARNING: Your filename has more than two extensions: ['.5_12', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
WARNING: Your filename has more than two extensions: ['.5_12', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
WARNING: Your filename has more than two extensions: ['.5_10', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
WARNING: Your filename has more than two extensions: ['.5_10', '.5', '.h5ad'].
Only considering the two last: ['.5', '.h5ad'].
Using automatic `threshold=0.002242638496682048`
computing neighbors
using 'X_pca' with n_pcs = 50
finished (0:00:02)
computing neighbors
using 'X_pca' with n_pcs = 50
finished (0:00:01)
computing neighbors
WARNING: n_obs too small: adjusting to `n_neighbors = 4`
using 'X_pca' with n_pcs = 50
finished (0:00:00)
computing neighbors
using 'X_pca' with n_pcs = 50
finished (0:00:01)
RealTimeKernel[n=11073, growth_iters=3, growth_rate_key='growth_rate_init', threshold='auto', self_transitions='all']
rtk.plot_random_walks(
n_sims=500,
max_iter=1000,
start_ixs={"day": 9.5},
basis="umap",
seed=0,
dpi=150,
size=30,
n_jobs=5,
)
Estimator#
adata.obs["cluster_name_full"] = (
adata.obs["cluster_name"]
.astype(str)
.astype("category")
.cat.rename_categories({"nan": "progenitors"})
.cat.reorder_categories(["progenitors"] + adata.obs["cluster_name"].cat.categories.tolist())
)
adata.uns["cluster_name_full_colors"] = ["#dedede"] + adata.uns["cluster_name_colors"]
estimator = cr.estimators.GPCCA(rtk)
estimator.compute_schur(n_components=5)
estimator.plot_spectrum(real_only=True)
plt.show()
terminal_states = ["parathyroid", "ubb", "cTEC", "mTEC"]
cluster_key = "cluster_name"
if (DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-subsetted_data-rtk.csv").is_file():
tsi_df = pd.read_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-subsetted_data-rtk.csv")
estimator._tsi = AnnData(tsi_df, uns={"terminal_states": terminal_states, "cluster_key": cluster_key})
tsi_score = estimator.tsi(n_macrostates=10, terminal_states=terminal_states, cluster_key=cluster_key)
else:
tsi_score = estimator.tsi(n_macrostates=10, terminal_states=terminal_states, cluster_key=cluster_key)
estimator._tsi.to_df().to_csv(
DATA_DIR / "pharyngeal_endoderm" / "results" / "tsi-subsetted_data-rtk.csv", index=False
)
print(f"TSI score: {tsi_score:.2f}")
TSI score: 1.00
/vol/storage/miniconda3/envs/cr2-py38/lib/python3.8/site-packages/anndata/_core/anndata.py:121: ImplicitModificationWarning: Transforming to str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)
palette = {"RealTimeKernel": "#DE8F05", "Optimal identification": "#000000"}
if SAVE_FIGURES:
fpath = FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"tsi-subsetted_data-rtk.{FIGURE_FORMAT}"
else:
fpath = None
with mplscience.style_context():
sns.set_style(style="whitegrid")
estimator.plot_tsi(palette=palette, save=fpath)
plt.show()
estimator.compute_macrostates(n_states=4, cluster_key="cluster_name")
if running_in_notebook():
estimator.plot_macrostates(which="all", basis="umap", title="", legend_loc="right", size=100)
if SAVE_FIGURES:
fpath = (
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"umap_colored_by_macrostates_subsetted_data.{FIGURE_FORMAT}"
)
estimator.plot_macrostates(which="all", basis="umap", title="", legend_loc=False, size=100, save=fpath)
Computing `4` macrostates
DEBUG: Setting the macrostates using macrostates memberships
DEBUG: Raising an exception if there are less than `6` cells.
Adding `.macrostates`
`.macrostates_memberships`
`.coarse_T`
`.coarse_initial_distribution
`.coarse_stationary_distribution`
`.schur_vectors`
`.schur_matrix`
`.eigendecomposition`
Finish (0:00:01)
macrostate_purity = get_state_purity(adata, estimator, states="macrostates", obs_col="cluster_name")
print(f"Mean purity: {np.mean(list(macrostate_purity.values()))}")
if running_in_notebook():
if SAVE_FIGURES:
fpath = (
FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"macrostate_purity_subsetted_data.{FIGURE_FORMAT}"
)
else:
fpath = None
palette = dict(zip(estimator.macrostates.cat.categories, estimator._macrostates.colors))
plot_state_purity(macrostate_purity, palette=palette, fpath=fpath, format=FIGURE_FORMAT)
plt.show()
estimator.set_terminal_states(["parathyroid", "cTEC", "mTEC", "ubb"])
if running_in_notebook():
estimator.plot_macrostates(which="terminal", basis="umap", title="", legend_loc="right", size=100)
if SAVE_FIGURES:
fpath = (
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"umap_colored_by_terminal_states_subsetted_data.{FIGURE_FORMAT}"
)
estimator.plot_macrostates(which="terminal", basis="umap", title="", legend_loc=False, size=100, save=fpath)
macrostate_purity = get_state_purity(adata, estimator, states="terminal_states", obs_col="cluster_name")
print(f"Mean purity: {np.mean(list(macrostate_purity.values()))}")
if running_in_notebook():
if SAVE_FIGURES:
fpath = (
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"terminal_states_purity_subsetted_data.{FIGURE_FORMAT}"
)
else:
fpath = None
palette = dict(zip(estimator.terminal_states.cat.categories, estimator._term_states.colors))
plot_state_purity(macrostate_purity, palette=palette, fpath=fpath, format=FIGURE_FORMAT)
plt.show()
estimator.compute_fate_probabilities(solver="gmres", use_petsc=True)
Computing fate probabilities
DEBUG: Solving the linear system using `PETSc` solver `'gmres'` on `1` core(s) with no preconditioner and `tol=1e-06`
Adding `adata.obsm['lineages_fwd']`
`.fate_probabilities`
Finish (0:00:00)
estimator.compute_fate_probabilities()
if running_in_notebook():
estimator.plot_fate_probabilities(same_plot=False, basis="umap", ncols=4)
if SAVE_FIGURES:
for terminal_state in estimator.terminal_states.cat.categories:
adata.obs[f"fate_prob_{terminal_state}"] = adata.obsm["lineages_fwd"][:, terminal_state].X.squeeze()
fig, ax = plt.subplots(figsize=(6, 4))
if running_in_notebook():
scv.pl.scatter(
adata,
basis="umap",
color=f"fate_prob_{terminal_state}",
cmap="viridis",
title="",
colorbar=SHOW_COLORBAR,
ax=ax,
)
fig.savefig(
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"fate_prob_{terminal_state}_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
estimator.compute_fate_probabilities()
if running_in_notebook():
estimator.plot_fate_probabilities(same_plot=False, basis="umap", perc=[0, 99], ncols=4)
if SAVE_FIGURES:
for terminal_state in estimator.terminal_states.cat.categories:
adata.obs[f"fate_prob_{terminal_state}"] = adata.obsm["lineages_fwd"][:, terminal_state].X.squeeze()
fig, ax = plt.subplots(figsize=(6, 4))
if running_in_notebook():
scv.pl.scatter(
adata,
basis="umap",
color=f"fate_prob_{terminal_state}",
cmap="viridis",
title="",
colorbar=SHOW_COLORBAR,
perc=[0, 99],
ax=ax,
)
fig.savefig(
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"fate_prob_{terminal_state}_clipped_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
adata.obs["mTEC_abs_probs"] = adata.obsm["term_states_fwd_memberships"]["mTEC"].X.squeeze()
if running_in_notebook():
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(
adata,
basis="umap",
c="mTEC_abs_probs",
s=50,
cmap="viridis",
title="",
legend_loc=None,
colorbar=SHOW_COLORBAR,
ax=ax,
)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"mtec_fate_probs_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
mTEC_abs_probs = adata.obsm["term_states_fwd_memberships"]["mTEC"].X.squeeze()
percentile = np.percentile(mTEC_abs_probs, 99)
mTEC_abs_probs = np.clip(mTEC_abs_probs, a_min=mTEC_abs_probs.min(), a_max=percentile)
adata.obs["mTEC_abs_probs"] = mTEC_abs_probs
if running_in_notebook():
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(
adata,
basis="umap",
c="mTEC_abs_probs",
s=50,
cmap="viridis",
title="",
legend_loc=None,
colorbar=SHOW_COLORBAR,
ax=ax,
)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"mtec_fate_probs_clipped_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
Driver analysis#
# fmt: off
mtec_genes = [
"Cldn3", "Cldn4", "Notch1", "Krt5", "H2-Aa", "H2-Ab1", "H2-Eb1",
"Grhl3", "Grhl1", "Elf5", "Irf6", "Sox9", "Upk2", "Ovol1", "Hes1",
"Rhov", "Pvrl4", "Klf5", "Egr1", "Sfn", "Perp", "Fxyd3", "Hspb1",
"Krt5", "S100a11",
]
# fmt: on
drivers_mtec = estimator.compute_lineage_drivers(
return_drivers=True, cluster_key="cluster_fine", lineages=["mTEC"], clusters=["2", "9"]
)
DEBUG: Computing correlations for lineages `['mTEC']` restricted to clusters `['2', '9']` in layer `X` with `use_raw=False`
Adding `adata.varm['terminal_lineage_drivers']`
`.lineage_drivers`
Finish (0:00:02)
gene_names = drivers_mtec.loc[
~(
drivers_mtec.index.str.startswith(("mt.", "Rpl", "Rps", "^Hb[^(p)]"))
| drivers_mtec.index.isin(S_GENES + G2M_GENES)
),
:,
].index
cr_ranking = pd.DataFrame(
drivers_mtec.loc[gene_names, "mTEC_corr"],
)
cr_ranking["ranking"] = np.arange(len(gene_names))
cr_ranking.to_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "driver_genes_ranking_cr.csv")
df = cr_ranking.iloc[:20, :]
if running_in_notebook():
fig, ax = plt.subplots(figsize=(6, 4))
y_min = np.min(df["mTEC_corr"])
y_max = np.max(df["mTEC_corr"])
y_min -= 0.1 * (y_max - y_min)
y_max += 0.4 * (y_max - y_min)
ax.set_ylim(y_min, y_max)
ax.set_xlim(-0.75, 19.5)
for gene in df.index:
if gene in mouse_tfs:
color = "#FEAE00"
elif gene in mtec_genes:
color = "#00AB8E"
else:
color = "#000000"
ax.text(
df.loc[gene, "ranking"],
df.loc[gene, "mTEC_corr"],
gene,
rotation="vertical",
verticalalignment="bottom",
horizontalalignment="center",
fontsize=20,
color=color,
)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"genes_ranked_by_correlation.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
Classical DE testing#
fate_prob_threshold = 0.5
adata.obs["mTEC_progenitors"] = False
adata.obs.loc[
adata.obs["cluster_fine"].isin(["2", "9"]) & (adata.obs["mTEC_abs_probs"] > fate_prob_threshold), "mTEC_progenitors"
] = True
adata.obs["mTEC_progenitors_groups"] = "Terminal states"
adata.obs.loc[adata.obs["cluster_name"].isin(["mTEC"]), "mTEC_progenitors_groups"] = "mTEC"
adata.obs.loc[
adata.obs["cluster_fine"].isin(["2", "9"]) & (adata.obs["mTEC_abs_probs"] <= fate_prob_threshold),
"mTEC_progenitors_groups",
] = "Progenitors"
adata.obs.loc[
adata.obs["cluster_fine"].isin(["2", "9"]) & (adata.obs["mTEC_abs_probs"] > fate_prob_threshold),
"mTEC_progenitors_groups",
] = "mTEC progenitors"
adata.obs["mTEC_progenitors_groups"] = (
adata.obs["mTEC_progenitors_groups"]
.astype("category")
.cat.reorder_categories(["Terminal states", "mTEC progenitors", "Progenitors", "mTEC"])
)
adata.uns["mTEC_progenitors_groups_colors"] = ["#dedede", "#0173b2", "#de8f05", "#b5bbe3"]
if running_in_notebook():
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(adata, basis="umap", c="mTEC_progenitors_groups", title="", ax=ax)
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(
adata,
basis="umap",
c="mTEC_progenitors_groups",
add_outline=["mTEC progenitors", "mTEC"],
title="",
legend_loc=False,
ax=ax,
)
if SAVE_FIGURES:
fig, ax = plt.subplots(figsize=(6, 4))
scv.pl.scatter(
adata,
basis="umap",
c="mTEC_progenitors_groups",
add_outline=["mTEC progenitors", "mTEC"],
title="",
legend_loc=False,
ax=ax,
)
fig.savefig(
FIG_DIR
/ "realtime_kernel"
/ "pharyngeal_endoderm"
/ f"umap_mtec_progenitors_subsetted_data.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
dpi=400,
)
adata_progenitors = adata[
adata.obs["mTEC_progenitors_groups"].isin(["Progenitors", "mTEC progenitors"]),
~(adata.var_names.str.startswith(("mt.", "Rpl", "Rps", "^Hb[^(p)]")) | adata.var_names.isin(S_GENES + G2M_GENES)),
].copy()
sc.tl.rank_genes_groups(
adata_progenitors, groupby="mTEC_progenitors_groups", groups=["Progenitors", "mTEC progenitors"]
)
WARNING: Default of the method has been changed to 't-test' from 't-test_overestim_var'
ranking genes
finished (0:00:01)
gene_names = (
pd.DataFrame(adata_progenitors.uns["rank_genes_groups"]["names"]).set_index("mTEC progenitors").index.tolist()
)
de_scores = (
pd.DataFrame(adata_progenitors.uns["rank_genes_groups"]["scores"]).set_index("mTEC progenitors").index.tolist()
)
de_ranking = pd.DataFrame({"ranking": np.arange(len(de_scores)), "DE score": de_scores}, index=gene_names)
de_ranking.to_csv(DATA_DIR / "pharyngeal_endoderm" / "results" / "driver_genes_ranking_de.csv")
gene_names = (
pd.DataFrame(adata_progenitors.uns["rank_genes_groups"]["names"]).set_index("mTEC progenitors").index.tolist()
)
de_scores = (
pd.DataFrame(adata_progenitors.uns["rank_genes_groups"]["scores"]).set_index("mTEC progenitors").index.tolist()
)
df = de_ranking.iloc[:20, :]
if running_in_notebook():
fig, ax = plt.subplots(figsize=(6, 4))
y_min = np.min(df["DE score"])
y_max = np.max(df["DE score"])
y_min -= 0.1 * (y_max - y_min)
y_max += 0.4 * (y_max - y_min)
ax.set_ylim(y_min, y_max)
ax.set_xlim(-0.75, 19.5)
for gene in df.index:
if gene in mouse_tfs:
color = "#FEAE00"
elif gene in mtec_genes:
color = "#00AB8E"
else:
color = "#000000"
ax.text(
df.loc[gene, "ranking"],
df.loc[gene, "DE score"],
gene,
rotation="vertical",
verticalalignment="bottom",
horizontalalignment="center",
fontsize=20,
color=color,
)
if SAVE_FIGURES:
fig.savefig(
FIG_DIR / "realtime_kernel" / "pharyngeal_endoderm" / f"genes_ranked_by_de.{FIGURE_FORMAT}",
format=FIGURE_FORMAT,
transparent=True,
bbox_inches="tight",
)
_mtec_genes = list(set(mtec_genes).intersection(cr_ranking.index))
_perc = (cr_ranking.loc[_mtec_genes, "ranking"] <= de_ranking.loc[_mtec_genes, "ranking"]).mean() * 100
print(f"Percentage of genes that CR ranks higher or equal than classical DE: {_perc:.2f}%")
_perc = (cr_ranking.loc[_mtec_genes, "ranking"] < de_ranking.loc[_mtec_genes, "ranking"]).mean() * 100
print(f"Percentage of genes that CR ranks strictly higher than classical DE: {_perc:.2f}%")
Percentage of genes that CR ranks higher or equal than classical DE: 71.43%
Percentage of genes that CR ranks strictly higher than classical DE: 66.67%