DPT benchmark on cell cycle data#
Notebook benchmarks latent time inference using DPT on cell cycle data.
Library imports#
import numpy as np
import pandas as pd
import anndata as ad
import scanpy as sc
from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import get_time_correlation
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_csv from `anndata` is deprecated. Import anndata.io.read_csv instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_excel from `anndata` is deprecated. Import anndata.io.read_excel instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_hdf from `anndata` is deprecated. Import anndata.io.read_hdf instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_loom from `anndata` is deprecated. Import anndata.io.read_loom instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_mtx from `anndata` is deprecated. Import anndata.io.read_mtx instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_text from `anndata` is deprecated. Import anndata.io.read_text instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_umi_tools from `anndata` is deprecated. Import anndata.io.read_umi_tools instead.
warnings.warn(msg, FutureWarning)
Constants#
DATASET = "cell_cycle"
SAVE_DATA = True
if SAVE_DATA:
(DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)
Data loading#
adata = ad.io.read_h5ad(DATA_DIR / DATASET / "processed" / "adata_processed.h5ad")
adata
AnnData object with n_obs × n_vars = 1146 × 395
obs: 'phase', 'fucci_time', 'initial_size_unspliced', 'initial_size_spliced', 'initial_size', 'n_counts'
var: 'ensum_id', 'gene_count_corr', 'means', 'dispersions', 'dispersions_norm', 'highly_variable', 'velocity_gamma', 'velocity_qreg_ratio', 'velocity_r2', 'velocity_genes'
uns: 'log1p', 'neighbors', 'pca', 'umap', 'velocity_params'
obsm: 'X_pca', 'X_umap'
varm: 'PCs', 'true_skeleton'
layers: 'Ms', 'Mu', 'spliced', 'total', 'unspliced', 'velocity'
obsp: 'connectivities', 'distances'
Pseuodtime inference#
adata.uns["iroot"] = np.flatnonzero(adata.obs["fucci_time"] == 0)[0]
sc.pp.neighbors(adata)
sc.tl.diffmap(adata)
sc.tl.dpt(adata)
time_correlation = [
get_time_correlation(ground_truth=adata.obs["fucci_time"], estimated=adata.obs["dpt_pseudotime"].values)
]
Data saving#
if SAVE_DATA:
pd.DataFrame({"time": time_correlation}).to_parquet(path=DATA_DIR / DATASET / "results" / "dpt_correlation.parquet")