VeloVAE benchmark on dyngen data

VeloVAE benchmark on dyngen data#

Notebook benchmarks velocity and latent time inference using VeloVAE on dyngen-generated data.

Library imports#

import velovae as vv

import numpy as np
import pandas as pd
import torch

import anndata as ad
import scvelo as scv

from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import get_velocity_correlation
2024-12-14 02:31:21.846239: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-12-14 02:31:26.831024: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1734139887.884843 3085998 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1734139888.345119 3085998 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-12-14 02:31:29.908273: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_csv from `anndata` is deprecated. Import anndata.io.read_csv instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_excel from `anndata` is deprecated. Import anndata.io.read_excel instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_hdf from `anndata` is deprecated. Import anndata.io.read_hdf instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_loom from `anndata` is deprecated. Import anndata.io.read_loom instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_mtx from `anndata` is deprecated. Import anndata.io.read_mtx instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_text from `anndata` is deprecated. Import anndata.io.read_text instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_umi_tools from `anndata` is deprecated. Import anndata.io.read_umi_tools instead.
  warnings.warn(msg, FutureWarning)

General settings#

scv.settings.verbosity = 3

Constants#

torch.manual_seed(0)
np.random.seed(0)
DATASET = "dyngen"
SAVE_DATA = True
if SAVE_DATA:
    (DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)
    (DATA_DIR / DATASET / "processed" / "velovae_vae").mkdir(parents=True, exist_ok=True)

Velocity pipeline#

velocity_correlation = []

for filename in (DATA_DIR / DATASET / "processed").iterdir():
    if filename.suffix != ".zarr":
        continue

    adata = ad.io.read_zarr(filename)

    try:
        vae = vv.VAE(adata, tmax=20, dim_z=5, device="cuda:0")
        config = {}
        vae.train(adata, config=config, plot=False, embed="pca")

        # Output velocity to adata object
        vae.save_anndata(adata, "vae", DATA_DIR / DATASET / "processed" / "velovae_vae", file_name="velovae.h5ad")

        adata.layers["velocity"] = adata.layers["vae_velocity"].copy()

        velocity_correlation.append(
            get_velocity_correlation(
                ground_truth=adata.layers["true_velocity"], estimated=adata.layers["velocity"], aggregation=np.mean
            )
        )

    except Exception as e:  # noqa: BLE001
        # Append np.nan in case of an error and optionally log the error
        print(f"An error occurred: {e}")
        velocity_correlation.append(np.nan)
Estimating ODE parameters...
Detected 59 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.42, 0.2890740448785467), (0.58, 0.7827494240291312)
KS-test result: [1. 0. 1.]
Initial induction: 84, repression: 21/105
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.035
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1197.    *********
Change in noise variance: 0.0522
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1284.    *********
Change in noise variance: 0.0202
Change in x0: 0.2577
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1558.    *********
Change in noise variance: 0.0021
Change in x0: 0.2075
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1659.    *********
Change in noise variance: 0.0022
Change in x0: 0.1758
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1696.    *********
Change in noise variance: 0.0014
Change in x0: 0.1505
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1848.    *********
Change in noise variance: 0.0005
Change in x0: 0.0920
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1897.    *********
Change in noise variance: 0.0000
Change in x0: 0.0793
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1904.    *********
Change in noise variance: 0.0000
Change in x0: 0.0672
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1985.    *********
Change in noise variance: 0.0000
Change in x0: 0.0616
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  3 m : 28 s             *********
Final: Train ELBO = 119.917,	Test ELBO = 117.292
Estimating ODE parameters...
Detected 25 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 2. 1.]
Initial induction: 35, repression: 24/59
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 3, test iteration: 4
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.028
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 336.    *********
Change in noise variance: 0.2841
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 358.    *********
Change in noise variance: 0.0281
Change in x0: 0.3996
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 372.    *********
Change in noise variance: 0.0069
Change in x0: 0.3231
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 385.    *********
Change in noise variance: 0.0288
Change in x0: 0.2682
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 396.    *********
Change in noise variance: 0.0067
Change in x0: 0.1960
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 409.    *********
Change in noise variance: 0.0044
Change in x0: 0.1752
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 422.    *********
Change in noise variance: 0.0026
Change in x0: 0.1730
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 435.    *********
Change in noise variance: 0.0023
Change in x0: 0.1750
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 446.    *********
Change in noise variance: 0.0018
Change in x0: 0.1787
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 471.    *********
Change in noise variance: 0.0013
Change in x0: 0.1775
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 488.    *********
Change in noise variance: 0.0008
Change in x0: 0.1746
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 33 s             *********
Final: Train ELBO = -17687.199,	Test ELBO = -17872.184
Estimating ODE parameters...
Detected 37 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.39, 0.1200757575748825), (0.61, 0.7766228691348986)
KS-test result: [0. 1. 1.]
Initial induction: 73, repression: 13/86
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 11.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 17.    *********
Change in noise variance: 0.3412
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.0173
Change in x0: 0.3557
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 28.    *********
Change in noise variance: 0.0057
Change in x0: 0.1894
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 34.    *********
Change in noise variance: 0.0012
Change in x0: 0.1652
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 40.    *********
Change in noise variance: 0.0009
Change in x0: 0.1457
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 46.    *********
Change in noise variance: 0.0000
Change in x0: 0.1203
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 52.    *********
Change in noise variance: 0.0000
Change in x0: 0.1090
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 58.    *********
Change in noise variance: 0.0000
Change in x0: 0.1062
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -17602.459,	Test ELBO = -17961.113
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 50, repression: 31/81
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 13.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 19.    *********
Change in noise variance: 0.2821
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 55.    *********
Change in noise variance: 0.4924
Change in x0: 1.1602
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 70.    *********
Change in noise variance: 0.0222
Change in x0: 0.6248
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 76.    *********
Change in noise variance: 0.0062
Change in x0: 0.4080
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 82.    *********
Change in noise variance: 0.0023
Change in x0: 0.2941
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 93.    *********
Change in noise variance: 0.0011
Change in x0: 0.2334
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 99.    *********
Change in noise variance: 0.0006
Change in x0: 0.1944
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 107.    *********
Change in noise variance: 0.0000
Change in x0: 0.1640
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 118.    *********
Change in noise variance: 0.0000
Change in x0: 0.1349
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 123.    *********
Change in noise variance: 0.0000
Change in x0: 0.1116
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 128.    *********
Change in noise variance: 0.0000
Change in x0: 0.0961
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 140.    *********
Change in noise variance: 0.0000
Change in x0: 0.0875
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  0 m :  5 s             *********
Final: Train ELBO = -18108.508,	Test ELBO = -17719.186
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 51, repression: 29/80
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 822.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 18
Change in noise variance: 0.1961
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1402.    *********
Change in noise variance: 0.2211
Change in x0: 1.2181
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1500.    *********
Change in noise variance: 0.0065
Change in x0: 0.3970
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1602.    *********
Change in noise variance: 0.0040
Change in x0: 0.3289
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1653.    *********
Change in noise variance: 0.0048
Change in x0: 0.3318
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1686.    *********
Change in noise variance: 0.0071
Change in x0: 0.3488
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1858.    *********
Change in noise variance: 0.0036
Change in x0: 0.3185
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1885.    *********
Change in noise variance: 0.0053
Change in x0: 0.2814
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1968.    *********
Change in noise variance: 0.0069
Change in x0: 0.1984
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 2002.    *********
Change in noise variance: 0.0054
Change in x0: 0.1864
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 2029.    *********
Change in noise variance: 0.0042
Change in x0: 0.1192
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 2167.    *********
Change in noise variance: 0.0040
Change in x0: 0.0985
*********             Velocity Refinement Round 13             *********
*********     Round 13: Early Stop Triggered at epoch 2299.    *********
Change in noise variance: 0.0076
Change in x0: 0.2069
*********             Velocity Refinement Round 14             *********
*********     Round 14: Early Stop Triggered at epoch 2389.    *********
Change in noise variance: 0.0076
Change in x0: 0.1763
*********             Velocity Refinement Round 15             *********
*********     Round 15: Early Stop Triggered at epoch 2489.    *********
Change in noise variance: 0.0028
Change in x0: 0.1887
*********             Velocity Refinement Round 16             *********
*********     Round 16: Early Stop Triggered at epoch 2534.    *********
Change in noise variance: 0.0029
Change in x0: 0.1844
*********             Velocity Refinement Round 17             *********
*********     Round 17: Early Stop Triggered at epoch 2606.    *********
Change in noise variance: 0.0053
Change in x0: 0.1728
*********             Velocity Refinement Round 18             *********
*********     Round 18: Early Stop Triggered at epoch 2656.    *********
Change in noise variance: 0.0058
Change in x0: 0.1727
*********             Velocity Refinement Round 19             *********
*********     Round 19: Early Stop Triggered at epoch 2794.    *********
Change in noise variance: 0.0049
Change in x0: 0.1381
*********             Velocity Refinement Round 20             *********
*********     Round 20: Early Stop Triggered at epoch 2819.    *********
Change in noise variance: 0.0000
Change in x0: 0.4219
*********              Finished. Total Time =   0 h :  2 m :  9 s             *********
Final: Train ELBO = -988.844,	Test ELBO = -1027.358
Estimating ODE parameters...
Detected 67 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 72, repression: 37/109
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.063
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1247.    *********
Change in noise variance: 0.0386
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1411.    *********
Change in noise variance: 0.0092
Change in x0: 0.2743
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1537.    *********
Change in noise variance: 0.0033
Change in x0: 0.1806
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1593.    *********
Change in noise variance: 0.0023
Change in x0: 0.1571
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1650.    *********
Change in noise variance: 0.0009
Change in x0: 0.1232
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1712.    *********
Change in noise variance: 0.0000
Change in x0: 0.0968
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1793.    *********
Change in noise variance: 0.0000
Change in x0: 0.0810
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 2065.    *********
Change in noise variance: 0.0000
Change in x0: 0.0707
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 2164.    *********
Change in noise variance: 0.0000
Change in x0: 0.0819
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  3 m : 30 s             *********
Final: Train ELBO = 126.385,	Test ELBO = 136.408
Estimating ODE parameters...
Detected 18 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.47, 0.8701520422929223), (0.53, 0.2900017161456463)
KS-test result: [1. 2. 0.]
Initial induction: 20, repression: 41/61
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.060
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 0.5563
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 119.    *********
Change in noise variance: 0.0420
Change in x0: 0.4501
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 150.    *********
Change in noise variance: 0.0017
Change in x0: 0.3890
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 158.    *********
Change in noise variance: 0.0033
Change in x0: 0.3775
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 165.    *********
Change in noise variance: 0.0030
Change in x0: 0.2746
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 171.    *********
Change in noise variance: 0.0016
Change in x0: 0.2153
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 178.    *********
Change in noise variance: 0.0006
Change in x0: 0.2057
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  0 m : 20 s             *********
Final: Train ELBO = -13756.597,	Test ELBO = -13157.369
Estimating ODE parameters...
Detected 34 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 45, repression: 18/63
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 0.1852
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0144
Change in x0: 0.7071
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0210
Change in x0: 0.4340
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 31.    *********
Change in noise variance: 0.0193
Change in x0: 0.3304
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0129
Change in x0: 0.2647
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 41.    *********
Change in noise variance: 0.0063
Change in x0: 0.2390
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 47.    *********
Change in noise variance: 0.0072
Change in x0: 0.2218
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 53.    *********
Change in noise variance: 0.0059
Change in x0: 0.2065
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0038
Change in x0: 0.1955
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 64.    *********
Change in noise variance: 0.0022
Change in x0: 0.1854
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 69.    *********
Change in noise variance: 0.0013
Change in x0: 0.1735
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 74.    *********
Change in noise variance: 0.0008
Change in x0: 0.1638
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  0 m : 16 s             *********
Final: Train ELBO = -18537.670,	Test ELBO = -18844.469
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.56, 0.3239376112994556), (0.44, 0.9106431281299979)
(0.52, 0.2605808478636782), (0.48, 0.805314977942315)
KS-test result: [1. 0. 0.]
Initial induction: 43, repression: 37/80
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.063
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 21.    *********
Change in noise variance: 0.4645
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0397
Change in x0: 0.4195
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 32.    *********
Change in noise variance: 0.0093
Change in x0: 0.2190
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0051
Change in x0: 0.1891
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0041
Change in x0: 0.1706
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 50.    *********
Change in noise variance: 0.0021
Change in x0: 0.1658
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 56.    *********
Change in noise variance: 0.0007
Change in x0: 0.1556
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 61.    *********
Change in noise variance: 0.0000
Change in x0: 0.1380
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 66.    *********
Change in noise variance: 0.0000
Change in x0: 0.1268
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 71.    *********
Change in noise variance: 0.0000
Change in x0: 0.1199
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 15 s             *********
Final: Train ELBO = -13288.914,	Test ELBO = -13578.303
Estimating ODE parameters...
Detected 20 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.53, 0.06264460485018672), (0.47, 0.7010424470363079)
(0.58, 0.707388107196621), (0.42, 0.09198273775867975)
KS-test result: [0. 0. 2.]
Initial induction: 27, repression: 49/76
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.017
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 15.    *********
Change in noise variance: 0.2935
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 65.    *********
Change in noise variance: 0.0327
Change in x0: 0.7020
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 71.    *********
Change in noise variance: 0.0079
Change in x0: 0.3804
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 77.    *********
Change in noise variance: 0.0046
Change in x0: 0.2670
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 83.    *********
Change in noise variance: 0.0010
Change in x0: 0.2560
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 89.    *********
Change in noise variance: 0.0012
Change in x0: 0.2223
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 95.    *********
Change in noise variance: 0.0011
Change in x0: 0.2148
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 101.    *********
Change in noise variance: 0.0007
Change in x0: 0.2009
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 106.    *********
Change in noise variance: 0.0000
Change in x0: 0.1751
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 112.    *********
Change in noise variance: 0.0000
Change in x0: 0.1636
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 118.    *********
Change in noise variance: 0.0000
Change in x0: 0.1660
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 15 s             *********
Final: Train ELBO = -15358.680,	Test ELBO = -14971.483
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.56, 0.24297477479231852), (0.44, 0.7779664767114342)
KS-test result: [0. 1. 1.]
Initial induction: 60, repression: 23/83
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 7.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 13.    *********
Change in noise variance: 0.5683
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.2858
Change in x0: 0.4193
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0066
Change in x0: 0.3290
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 32.    *********
Change in noise variance: 0.0037
Change in x0: 0.2685
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0024
Change in x0: 0.2072
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 45.    *********
Change in noise variance: 0.0017
Change in x0: 0.1657
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 51.    *********
Change in noise variance: 0.0008
Change in x0: 0.1436
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 56.    *********
Change in noise variance: 0.0000
Change in x0: 0.1297
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 61.    *********
Change in noise variance: 0.0000
Change in x0: 0.1180
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 66.    *********
Change in noise variance: 0.0000
Change in x0: 0.1084
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 15 s             *********
Final: Train ELBO = -18305.402,	Test ELBO = -18420.889
Estimating ODE parameters...
Detected 30 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.1494859643683501), (0.38, 0.8554410718115751)
KS-test result: [0. 1. 1.]
Initial induction: 49, repression: 23/72
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 3, test iteration: 4
*********       Stage 1: Early Stop Triggered at epoch 10.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.045
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 57.    *********
Change in noise variance: 0.2595
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 184.    *********
Change in noise variance: 0.0213
Change in x0: 0.4230
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 195.    *********
Change in noise variance: 0.0013
Change in x0: 0.4526
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 202.    *********
Change in noise variance: 0.0008
Change in x0: 0.3712
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 217.    *********
Change in noise variance: 0.0000
Change in x0: 0.2914
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 224.    *********
Change in noise variance: 0.0000
Change in x0: 0.2443
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 235.    *********
Change in noise variance: 0.0000
Change in x0: 0.2246
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 242.    *********
Change in noise variance: 0.0000
Change in x0: 0.2088
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 249.    *********
Change in noise variance: 0.0000
Change in x0: 0.1991
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m : 21 s             *********
Final: Train ELBO = -12114.753,	Test ELBO = -12328.426
Estimating ODE parameters...
Detected 31 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.7680112510853812), (0.38, 0.1779761449705523)
KS-test result: [1. 1. 0.]
Initial induction: 72, repression: 13/85
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 215.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 625.    *********
Change in noise variance: 0.7099
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 697.    *********
Change in noise variance: 0.0840
Change in x0: 0.2672
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 714.    *********
Change in noise variance: 0.0085
Change in x0: 0.2250
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 720.    *********
Change in noise variance: 0.0042
Change in x0: 0.1654
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 725.    *********
Change in noise variance: 0.0017
Change in x0: 0.1122
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 731.    *********
Change in noise variance: 0.0010
Change in x0: 0.0804
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 737.    *********
Change in noise variance: 0.0000
Change in x0: 0.0653
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 799.    *********
Change in noise variance: 0.0000
Change in x0: 0.0524
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 808.    *********
Change in noise variance: 0.0000
Change in x0: 0.0711
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m : 52 s             *********
Final: Train ELBO = -8640.196,	Test ELBO = -8722.279
Estimating ODE parameters...
Detected 37 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 50, repression: 29/79
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 10.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 16.    *********
Change in noise variance: 0.2294
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 21.    *********
Change in noise variance: 0.0072
Change in x0: 0.5413
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 30.    *********
Change in noise variance: 0.0046
Change in x0: 0.3871
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0114
Change in x0: 0.3332
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 45.    *********
Change in noise variance: 0.0150
Change in x0: 0.2683
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 54.    *********
Change in noise variance: 0.0011
Change in x0: 0.2226
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 62.    *********
Change in noise variance: 0.0041
Change in x0: 0.1993
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 68.    *********
Change in noise variance: 0.0036
Change in x0: 0.1888
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 73.    *********
Change in noise variance: 0.0025
Change in x0: 0.1799
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 85.    *********
Change in noise variance: 0.0016
Change in x0: 0.1698
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 92.    *********
Change in noise variance: 0.0010
Change in x0: 0.1602
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 101.    *********
Change in noise variance: 0.0007
Change in x0: 0.1550
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -16939.322,	Test ELBO = -17156.008
Estimating ODE parameters...
Detected 38 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 56, repression: 27/83
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 24.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 39.    *********
Change in noise variance: 0.2136
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0086
Change in x0: 0.6531
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 224.    *********
Change in noise variance: 0.0015
Change in x0: 0.4806
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 254.    *********
Change in noise variance: 0.0004
Change in x0: 0.3275
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 298.    *********
Change in noise variance: 0.0000
Change in x0: 0.2862
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 322.    *********
Change in noise variance: 0.0000
Change in x0: 0.2618
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 347.    *********
Change in noise variance: 0.0000
Change in x0: 0.2411
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 432.    *********
Change in noise variance: 0.0000
Change in x0: 0.2238
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 442.    *********
Change in noise variance: 0.0000
Change in x0: 0.2127
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 478.    *********
Change in noise variance: 0.0000
Change in x0: 0.2050
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 37 s             *********
Final: Train ELBO = -13098.929,	Test ELBO = -13426.184
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 48, repression: 33/81
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 940.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 23
*********     Round 1: Early Stop Triggered at epoch 1145.    *********
Change in noise variance: 0.2259
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1151.    *********
Change in noise variance: 0.2420
Change in x0: 0.9584
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1156.    *********
Change in noise variance: 0.0045
Change in x0: 0.7704
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1161.    *********
Change in noise variance: 0.0063
Change in x0: 0.7077
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1166.    *********
Change in noise variance: 0.0023
Change in x0: 0.5915
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1171.    *********
Change in noise variance: 0.0040
Change in x0: 0.4506
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1176.    *********
Change in noise variance: 0.0052
Change in x0: 0.3248
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1181.    *********
Change in noise variance: 0.0035
Change in x0: 0.2641
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1186.    *********
Change in noise variance: 0.0042
Change in x0: 0.2259
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1403.    *********
Change in noise variance: 0.0026
Change in x0: 0.1946
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 1408.    *********
Change in noise variance: 0.0060
Change in x0: 0.1857
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 1413.    *********
Change in noise variance: 0.0029
Change in x0: 0.1329
*********             Velocity Refinement Round 13             *********
*********     Round 13: Early Stop Triggered at epoch 1501.    *********
Change in noise variance: 0.0042
Change in x0: 0.0993
*********             Velocity Refinement Round 14             *********
*********     Round 14: Early Stop Triggered at epoch 1506.    *********
Change in noise variance: 0.0026
Change in x0: 0.0917
*********             Velocity Refinement Round 15             *********
*********     Round 15: Early Stop Triggered at epoch 1512.    *********
Change in noise variance: 0.0027
Change in x0: 0.0536
*********             Velocity Refinement Round 16             *********
*********     Round 16: Early Stop Triggered at epoch 1753.    *********
Change in noise variance: 0.0038
Change in x0: 0.0348
*********             Velocity Refinement Round 17             *********
*********     Round 17: Early Stop Triggered at epoch 1768.    *********
Change in noise variance: 0.0020
Change in x0: 0.1141
*********             Velocity Refinement Round 18             *********
*********     Round 18: Early Stop Triggered at epoch 1774.    *********
Change in noise variance: 0.0012
Change in x0: 0.0552
*********             Velocity Refinement Round 19             *********
*********     Round 19: Early Stop Triggered at epoch 1847.    *********
Change in noise variance: 0.0014
Change in x0: 0.0458
*********             Velocity Refinement Round 20             *********
Stage 2: Early Stop Triggered at round 19.
*********              Finished. Total Time =   0 h :  1 m : 33 s             *********
Final: Train ELBO = -1605.839,	Test ELBO = -1667.010
Estimating ODE parameters...
Detected 30 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.40, 0.17999999999639998), (0.60, 0.7935524750489109)
KS-test result: [1. 1. 0.]
Initial induction: 60, repression: 14/74
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.020
Average Set Size: 12
*********     Round 1: Early Stop Triggered at epoch 200.    *********
Change in noise variance: 1.1207
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 229.    *********
Change in noise variance: 0.0484
Change in x0: 0.4921
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 240.    *********
Change in noise variance: 0.0027
Change in x0: 0.3630
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 266.    *********
Change in noise variance: 0.0016
Change in x0: 0.3171
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 282.    *********
Change in noise variance: 0.0009
Change in x0: 0.2796
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 303.    *********
Change in noise variance: 0.0000
Change in x0: 0.2425
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 309.    *********
Change in noise variance: 0.0000
Change in x0: 0.2244
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 337.    *********
Change in noise variance: 0.0000
Change in x0: 0.2111
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 363.    *********
Change in noise variance: 0.0000
Change in x0: 0.1923
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 372.    *********
Change in noise variance: 0.0000
Change in x0: 0.1785
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 384.    *********
Change in noise variance: 0.0000
Change in x0: 0.1698
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 26 s             *********
Final: Train ELBO = -15334.994,	Test ELBO = -15484.329
Estimating ODE parameters...
Detected 31 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 36, repression: 14/50
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 0.2023
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 19.    *********
Change in noise variance: 0.0102
Change in x0: 0.6114
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 25.    *********
Change in noise variance: 0.0015
Change in x0: 0.4109
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 31.    *********
Change in noise variance: 0.0010
Change in x0: 0.2966
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0000
Change in x0: 0.2537
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 41.    *********
Change in noise variance: 0.0000
Change in x0: 0.2370
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 46.    *********
Change in noise variance: 0.0000
Change in x0: 0.2231
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 51.    *********
Change in noise variance: 0.0000
Change in x0: 0.2072
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0000
Change in x0: 0.1936
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 67.    *********
Change in noise variance: 0.0000
Change in x0: 0.1863
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -19504.984,	Test ELBO = -19992.318
Estimating ODE parameters...
Detected 28 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.36, 0.9320509281825696), (0.64, 0.2539013763998727)
(0.30, 0.05787037036969842), (0.70, 0.8620463316579644)
KS-test result: [1. 0. 0.]
Initial induction: 37, repression: 35/72
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 7.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 13.    *********
Change in noise variance: 0.2301
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 18.    *********
Change in noise variance: 0.0175
Change in x0: 0.6791
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 24.    *********
Change in noise variance: 0.0021
Change in x0: 0.4718
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 30.    *********
Change in noise variance: 0.0061
Change in x0: 0.3152
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0028
Change in x0: 0.2411
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 42.    *********
Change in noise variance: 0.0006
Change in x0: 0.2266
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 48.    *********
Change in noise variance: 0.0000
Change in x0: 0.2186
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -16154.742,	Test ELBO = -15867.226
Estimating ODE parameters...
Detected 37 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.56, 0.24578835857334116), (0.44, 0.8411598564162884)
KS-test result: [1. 0. 1.]
Initial induction: 55, repression: 22/77
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 10.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.037
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 24.    *********
Change in noise variance: 0.3507
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 29.    *********
Change in noise variance: 0.0316
Change in x0: 0.4174
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 35.    *********
Change in noise variance: 0.0019
Change in x0: 0.3224
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 41.    *********
Change in noise variance: 0.0016
Change in x0: 0.2422
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 47.    *********
Change in noise variance: 0.0008
Change in x0: 0.2128
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 53.    *********
Change in noise variance: 0.0000
Change in x0: 0.1934
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0000
Change in x0: 0.1704
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 67.    *********
Change in noise variance: 0.0000
Change in x0: 0.1488
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 73.    *********
Change in noise variance: 0.0000
Change in x0: 0.1394
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -14676.509,	Test ELBO = -15549.430
Estimating ODE parameters...
Detected 33 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 47, repression: 26/73
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 6.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 13.    *********
Change in noise variance: 0.3068
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 334.    *********
Change in noise variance: 0.0243
Change in x0: 0.6400
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 408.    *********
Change in noise variance: 0.0046
Change in x0: 0.4568
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 437.    *********
Change in noise variance: 0.0017
Change in x0: 0.3252
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 466.    *********
Change in noise variance: 0.0013
Change in x0: 0.2669
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 489.    *********
Change in noise variance: 0.0010
Change in x0: 0.2328
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 494.    *********
Change in noise variance: 0.0000
Change in x0: 0.2068
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 504.    *********
Change in noise variance: 0.0000
Change in x0: 0.1984
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 23 s             *********
Final: Train ELBO = -15790.699,	Test ELBO = -15499.406
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
An error occurred: alpha <= 0
Estimating ODE parameters...
Detected 31 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.61, 0.26568115737011694), (0.39, 0.8432651228926057)
KS-test result: [0. 1. 1.]
Initial induction: 50, repression: 29/79
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 6.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.053
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 12.    *********
Change in noise variance: 0.3293
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 17.    *********
Change in noise variance: 0.0461
Change in x0: 0.2776
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.0068
Change in x0: 0.2148
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 27.    *********
Change in noise variance: 0.0019
Change in x0: 0.2173
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 33.    *********
Change in noise variance: 0.0067
Change in x0: 0.2049
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 39.    *********
Change in noise variance: 0.0038
Change in x0: 0.1761
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 45.    *********
Change in noise variance: 0.0015
Change in x0: 0.1639
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 51.    *********
Change in noise variance: 0.0006
Change in x0: 0.1546
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 14 s             *********
Final: Train ELBO = -19448.113,	Test ELBO = -19306.715
Estimating ODE parameters...
Detected 21 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [2. 1. 1.]
Initial induction: 28, repression: 26/54
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 249.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.037
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 255.    *********
Change in noise variance: 0.2184
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 322.    *********
Change in noise variance: 0.0163
Change in x0: 0.8697
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 327.    *********
Change in noise variance: 0.0055
Change in x0: 0.6548
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 355.    *********
Change in noise variance: 0.0160
Change in x0: 0.4874
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 372.    *********
Change in noise variance: 0.0071
Change in x0: 0.3342
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 377.    *********
Change in noise variance: 0.0011
Change in x0: 0.2571
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 387.    *********
Change in noise variance: 0.0011
Change in x0: 0.2222
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 392.    *********
Change in noise variance: 0.0009
Change in x0: 0.2013
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 404.    *********
Change in noise variance: 0.0000
Change in x0: 0.1815
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 409.    *********
Change in noise variance: 0.0000
Change in x0: 0.1691
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 414.    *********
Change in noise variance: 0.0000
Change in x0: 0.1666
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 33 s             *********
Final: Train ELBO = -847.994,	Test ELBO = -912.455
Estimating ODE parameters...
Detected 81 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.49, 0.23313747351401098), (0.51, 0.8250112585464345)
KS-test result: [1. 0. 1.]
Initial induction: 104, repression: 36/140
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.037
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1009.    *********
Change in noise variance: 0.1328
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1051.    *********
Change in noise variance: 0.0066
Change in x0: 0.5858
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1058.    *********
Change in noise variance: 0.0054
Change in x0: 0.4545
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1065.    *********
Change in noise variance: 0.0026
Change in x0: 0.3529
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1072.    *********
Change in noise variance: 0.0021
Change in x0: 0.3174
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1079.    *********
Change in noise variance: 0.0011
Change in x0: 0.2811
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1086.    *********
Change in noise variance: 0.0007
Change in x0: 0.2527
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1093.    *********
Change in noise variance: 0.0000
Change in x0: 0.2334
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1125.    *********
Change in noise variance: 0.0000
Change in x0: 0.2108
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1191.    *********
Change in noise variance: 0.0000
Change in x0: 0.1929
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 1227.    *********
Change in noise variance: 0.0000
Change in x0: 0.1785
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 1234.    *********
Change in noise variance: 0.0000
Change in x0: 0.1787
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  3 m : 19 s             *********
Final: Train ELBO = -228.650,	Test ELBO = -247.470
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 45, repression: 27/72
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.020
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 15.    *********
Change in noise variance: 0.3534
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0696
Change in x0: 0.4406
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 35.    *********
Change in noise variance: 0.0021
Change in x0: 0.3764
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 41.    *********
Change in noise variance: 0.0032
Change in x0: 0.3248
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 47.    *********
Change in noise variance: 0.0029
Change in x0: 0.2676
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 53.    *********
Change in noise variance: 0.0014
Change in x0: 0.2334
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0007
Change in x0: 0.2122
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 65.    *********
Change in noise variance: 0.0000
Change in x0: 0.1937
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 71.    *********
Change in noise variance: 0.0000
Change in x0: 0.1762
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 77.    *********
Change in noise variance: 0.0000
Change in x0: 0.1606
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 83.    *********
Change in noise variance: 0.0000
Change in x0: 0.1500
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 89.    *********
Change in noise variance: 0.0000
Change in x0: 0.1462
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -14246.879,	Test ELBO = -14316.127
Estimating ODE parameters...
Detected 106 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 111, repression: 43/154
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.044
Average Set Size: 21
*********     Round 1: Early Stop Triggered at epoch 1127.    *********
Change in noise variance: 0.0615
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1236.    *********
Change in noise variance: 0.0089
Change in x0: 0.3694
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1320.    *********
Change in noise variance: 0.0034
Change in x0: 0.2746
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1526.    *********
Change in noise variance: 0.0015
Change in x0: 0.2268
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1680.    *********
Change in noise variance: 0.0009
Change in x0: 0.1868
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1936.    *********
Change in noise variance: 0.0000
Change in x0: 0.1435
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 2020.    *********
Change in noise variance: 0.0000
Change in x0: 0.1323
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 2157.    *********
Change in noise variance: 0.0000
Change in x0: 0.1100
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 2258.    *********
Change in noise variance: 0.0000
Change in x0: 0.1042
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  5 m : 35 s             *********
Final: Train ELBO = 108.060,	Test ELBO = 96.440
Estimating ODE parameters...
Detected 34 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.11364537925550108), (0.41, 0.9060473661761724)
KS-test result: [1. 1. 0.]
Initial induction: 54, repression: 19/73
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 0.2778
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 19.    *********
Change in noise variance: 0.0288
Change in x0: 0.6292
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 25.    *********
Change in noise variance: 0.0010
Change in x0: 0.3971
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 31.    *********
Change in noise variance: 0.0000
Change in x0: 0.3093
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 37.    *********
Change in noise variance: 0.0000
Change in x0: 0.2501
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 43.    *********
Change in noise variance: 0.0000
Change in x0: 0.2238
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 49.    *********
Change in noise variance: 0.0000
Change in x0: 0.2013
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 55.    *********
Change in noise variance: 0.0000
Change in x0: 0.1853
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 61.    *********
Change in noise variance: 0.0000
Change in x0: 0.1730
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 67.    *********
Change in noise variance: 0.0000
Change in x0: 0.1671
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -14860.914,	Test ELBO = -14663.303
Estimating ODE parameters...
Detected 62 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 68, repression: 49/117
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.039
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1159.    *********
Change in noise variance: 0.0512
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1513.    *********
Change in noise variance: 0.0108
Change in x0: 0.3184
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1687.    *********
Change in noise variance: 0.0063
Change in x0: 0.2393
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1766.    *********
Change in noise variance: 0.0031
Change in x0: 0.1870
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1983.    *********
Change in noise variance: 0.0010
Change in x0: 0.1339
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 2135.    *********
Change in noise variance: 0.0000
Change in x0: 0.1055
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 2149.    *********
Change in noise variance: 0.0000
Change in x0: 0.0870
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 2171.    *********
Change in noise variance: 0.0000
Change in x0: 0.0733
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 2207.    *********
Change in noise variance: 0.0000
Change in x0: 0.0647
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  3 m : 48 s             *********
Final: Train ELBO = 177.682,	Test ELBO = 170.667
Estimating ODE parameters...
Detected 28 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 44, repression: 26/70
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 16.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 235.    *********
Change in noise variance: 0.5609
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 313.    *********
Change in noise variance: 0.0216
Change in x0: 0.1737
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 330.    *********
Change in noise variance: 0.0028
Change in x0: 0.1804
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 336.    *********
Change in noise variance: 0.0010
Change in x0: 0.1564
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 342.    *********
Change in noise variance: 0.0009
Change in x0: 0.1409
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 383.    *********
Change in noise variance: 0.0000
Change in x0: 0.1138
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 389.    *********
Change in noise variance: 0.0000
Change in x0: 0.1130
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  0 m : 28 s             *********
Final: Train ELBO = -11489.504,	Test ELBO = -11277.100
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.36, 0.25070307343442405), (0.64, 0.7640605172671028)
(0.57, 0.8475524475473406), (0.43, 0.10044955044863953)
KS-test result: [0. 0. 1.]
Initial induction: 62, repression: 22/84
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 1349.    *********
Change in noise variance: 0.2281
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1522.    *********
Change in noise variance: 0.0052
Change in x0: 0.6921
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1663.    *********
Change in noise variance: 0.0064
Change in x0: 0.3447
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1710.    *********
Change in noise variance: 0.0064
Change in x0: 0.3396
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1734.    *********
Change in noise variance: 0.0022
Change in x0: 0.2616
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1783.    *********
Change in noise variance: 0.0020
Change in x0: 0.2183
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1799.    *********
Change in noise variance: 0.0013
Change in x0: 0.2125
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1835.    *********
Change in noise variance: 0.0007
Change in x0: 0.2014
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1860.    *********
Change in noise variance: 0.0000
Change in x0: 0.1965
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  1 m : 32 s             *********
Final: Train ELBO = -1606.755,	Test ELBO = -1609.287
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.25073704656682283), (0.38, 0.8864542002036675)
KS-test result: [0. 1. 1.]
Initial induction: 44, repression: 27/71
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 6.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.037
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 212.    *********
Change in noise variance: 0.7725
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 245.    *********
Change in noise variance: 0.0427
Change in x0: 0.6257
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 254.    *********
Change in noise variance: 0.0046
Change in x0: 0.3750
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 260.    *********
Change in noise variance: 0.0027
Change in x0: 0.3104
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 268.    *********
Change in noise variance: 0.0009
Change in x0: 0.2714
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 274.    *********
Change in noise variance: 0.0000
Change in x0: 0.2441
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 280.    *********
Change in noise variance: 0.0000
Change in x0: 0.2225
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 286.    *********
Change in noise variance: 0.0000
Change in x0: 0.2113
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 292.    *********
Change in noise variance: 0.0000
Change in x0: 0.2111
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m : 27 s             *********
Final: Train ELBO = -14000.091,	Test ELBO = -14185.506
Estimating ODE parameters...
Detected 40 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.50, 0.7798950426379351), (0.50, 0.36970058925632504)
KS-test result: [0. 1. 1.]
Initial induction: 68, repression: 17/85
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.060
Average Set Size: 11
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 1.2757
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0801
Change in x0: 0.4768
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0039
Change in x0: 0.2874
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 46.    *********
Change in noise variance: 0.0015
Change in x0: 0.2370
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 52.    *********
Change in noise variance: 0.0008
Change in x0: 0.2077
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0000
Change in x0: 0.1950
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 65.    *********
Change in noise variance: 0.0000
Change in x0: 0.1838
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 71.    *********
Change in noise variance: 0.0000
Change in x0: 0.1655
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 79.    *********
Change in noise variance: 0.0000
Change in x0: 0.1513
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 85.    *********
Change in noise variance: 0.0000
Change in x0: 0.1465
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 14 s             *********
Final: Train ELBO = -20587.127,	Test ELBO = -20604.510
Estimating ODE parameters...
Detected 31 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.61, 0.25328421223351666), (0.39, 0.8536592818877626)
(0.50, 0.13934589145383208), (0.50, 0.7024048173998951)
KS-test result: [0. 1. 0.]
Initial induction: 43, repression: 38/81
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 11.    *********
Change in noise variance: 0.3671
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 16.    *********
Change in noise variance: 0.0477
Change in x0: 0.6078
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.0024
Change in x0: 0.3214
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 28.    *********
Change in noise variance: 0.0022
Change in x0: 0.2438
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 34.    *********
Change in noise variance: 0.0012
Change in x0: 0.2155
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 40.    *********
Change in noise variance: 0.0008
Change in x0: 0.1997
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 46.    *********
Change in noise variance: 0.0000
Change in x0: 0.1880
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 52.    *********
Change in noise variance: 0.0000
Change in x0: 0.1739
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 58.    *********
Change in noise variance: 0.0000
Change in x0: 0.1664
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m :  5 s             *********
Final: Train ELBO = -14216.592,	Test ELBO = -14286.768
Estimating ODE parameters...
Detected 31 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 42, repression: 31/73
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 13.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 19.    *********
Change in noise variance: 0.2287
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0118
Change in x0: 0.4770
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 141.    *********
Change in noise variance: 0.0030
Change in x0: 0.3930
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 191.    *********
Change in noise variance: 0.0022
Change in x0: 0.3111
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 221.    *********
Change in noise variance: 0.0012
Change in x0: 0.2692
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 262.    *********
Change in noise variance: 0.0011
Change in x0: 0.2309
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 274.    *********
Change in noise variance: 0.0009
Change in x0: 0.1985
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 290.    *********
Change in noise variance: 0.0000
Change in x0: 0.1709
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 295.    *********
Change in noise variance: 0.0000
Change in x0: 0.1484
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 305.    *********
Change in noise variance: 0.0000
Change in x0: 0.1350
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 314.    *********
Change in noise variance: 0.0000
Change in x0: 0.1269
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 27 s             *********
Final: Train ELBO = -14776.117,	Test ELBO = -14653.228
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.20672961138115753), (0.38, 0.8812856125296097)
(0.47, 0.15060377505382813), (0.53, 0.8300993269683058)
(0.55, 0.05115333441901289), (0.45, 0.8035111864172376)
KS-test result: [0. 0. 0.]
Initial induction: 37, repression: 48/85
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 16.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.083
Average Set Size: 15
*********     Round 1: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.2995
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 27.    *********
Change in noise variance: 0.0712
Change in x0: 0.4024
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 32.    *********
Change in noise variance: 0.0131
Change in x0: 0.3061
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0088
Change in x0: 0.2449
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0033
Change in x0: 0.2076
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 50.    *********
Change in noise variance: 0.0013
Change in x0: 0.1996
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 56.    *********
Change in noise variance: 0.0009
Change in x0: 0.1879
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 61.    *********
Change in noise variance: 0.0000
Change in x0: 0.1675
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 66.    *********
Change in noise variance: 0.0000
Change in x0: 0.1580
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m : 15 s             *********
Final: Train ELBO = -16159.053,	Test ELBO = -16439.312
Estimating ODE parameters...
Detected 30 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 48, repression: 25/73
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 11.    *********
Change in noise variance: 0.3156
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 16.    *********
Change in noise variance: 0.0792
Change in x0: 0.4805
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.0043
Change in x0: 0.3847
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 28.    *********
Change in noise variance: 0.0088
Change in x0: 0.2860
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 34.    *********
Change in noise variance: 0.0124
Change in x0: 0.2093
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 40.    *********
Change in noise variance: 0.0065
Change in x0: 0.1651
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 46.    *********
Change in noise variance: 0.0027
Change in x0: 0.1482
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 52.    *********
Change in noise variance: 0.0047
Change in x0: 0.1399
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 58.    *********
Change in noise variance: 0.0033
Change in x0: 0.1331
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 64.    *********
Change in noise variance: 0.0020
Change in x0: 0.1280
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 70.    *********
Change in noise variance: 0.0014
Change in x0: 0.1245
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 76.    *********
Change in noise variance: 0.0010
Change in x0: 0.1219
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  0 m : 19 s             *********
Final: Train ELBO = -14586.744,	Test ELBO = -14794.264
Estimating ODE parameters...
Detected 33 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.3174184423133425), (0.41, 0.8289720081868958)
KS-test result: [0. 2. 1.]
Initial induction: 33, repression: 41/74
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.025
Average Set Size: 11
*********     Round 1: Early Stop Triggered at epoch 15.    *********
Change in noise variance: 1.1601
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 249.    *********
Change in noise variance: 0.0809
Change in x0: 0.5851
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 386.    *********
Change in noise variance: 0.0074
Change in x0: 0.3659
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 429.    *********
Change in noise variance: 0.0025
Change in x0: 0.3050
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 477.    *********
Change in noise variance: 0.0010
Change in x0: 0.2527
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 493.    *********
Change in noise variance: 0.0000
Change in x0: 0.2137
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 509.    *********
Change in noise variance: 0.0000
Change in x0: 0.1961
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 533.    *********
Change in noise variance: 0.0000
Change in x0: 0.1938
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 31 s             *********
Final: Train ELBO = -14918.545,	Test ELBO = -16750.279
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.48, 0.14413919413760584), (0.52, 0.9094301356860764)
KS-test result: [1. 0. 1.]
Initial induction: 60, repression: 17/77
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.017
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 151.    *********
Change in noise variance: 0.6006
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 291.    *********
Change in noise variance: 0.0873
Change in x0: 0.5995
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 319.    *********
Change in noise variance: 0.0039
Change in x0: 0.5194
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 325.    *********
Change in noise variance: 0.0036
Change in x0: 0.3645
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 331.    *********
Change in noise variance: 0.0024
Change in x0: 0.2908
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 337.    *********
Change in noise variance: 0.0017
Change in x0: 0.2739
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 343.    *********
Change in noise variance: 0.0016
Change in x0: 0.2460
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 349.    *********
Change in noise variance: 0.0015
Change in x0: 0.1965
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 355.    *********
Change in noise variance: 0.0008
Change in x0: 0.1640
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 361.    *********
Change in noise variance: 0.0000
Change in x0: 0.1623
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 26 s             *********
Final: Train ELBO = -15776.562,	Test ELBO = -15699.438
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 43, repression: 26/69
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 7.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.017
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 13.    *********
Change in noise variance: 0.3804
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 18.    *********
Change in noise variance: 0.0383
Change in x0: 0.4629
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 63.    *********
Change in noise variance: 0.0023
Change in x0: 0.3529
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 86.    *********
Change in noise variance: 0.0020
Change in x0: 0.2845
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 101.    *********
Change in noise variance: 0.0012
Change in x0: 0.2306
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 107.    *********
Change in noise variance: 0.0006
Change in x0: 0.1938
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 113.    *********
Change in noise variance: 0.0000
Change in x0: 0.1721
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 119.    *********
Change in noise variance: 0.0000
Change in x0: 0.1692
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 21 s             *********
Final: Train ELBO = -15506.851,	Test ELBO = -15114.594
Estimating ODE parameters...
Detected 43 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 55, repression: 24/79
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 7.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 17
Change in noise variance: 0.3149
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 536.    *********
Change in noise variance: 0.0409
Change in x0: 0.5604
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 549.    *********
Change in noise variance: 0.0115
Change in x0: 0.3583
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 573.    *********
Change in noise variance: 0.0167
Change in x0: 0.2715
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 596.    *********
Change in noise variance: 0.0089
Change in x0: 0.2361
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 634.    *********
Change in noise variance: 0.0026
Change in x0: 0.2195
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 677.    *********
Change in noise variance: 0.0054
Change in x0: 0.2167
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 706.    *********
Change in noise variance: 0.0046
Change in x0: 0.2121
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 753.    *********
Change in noise variance: 0.0030
Change in x0: 0.1999
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 767.    *********
Change in noise variance: 0.0017
Change in x0: 0.1882
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 811.    *********
Change in noise variance: 0.0009
Change in x0: 0.1820
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 46 s             *********
Final: Train ELBO = -17525.242,	Test ELBO = -17494.643
Estimating ODE parameters...
Detected 28 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 46, repression: 16/62
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.043
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 11.    *********
Change in noise variance: 0.2553
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 16.    *********
Change in noise variance: 0.0305
Change in x0: 0.6486
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 22.    *********
Change in noise variance: 0.0164
Change in x0: 0.3742
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 28.    *********
Change in noise variance: 0.0181
Change in x0: 0.2555
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 33.    *********
Change in noise variance: 0.0008
Change in x0: 0.2440
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0000
Change in x0: 0.2472
*********             Velocity Refinement Round 7             *********
Stage 2: Early Stop Triggered at round 6.
*********              Finished. Total Time =   0 h :  0 m : 15 s             *********
Final: Train ELBO = -20341.797,	Test ELBO = -20511.984
Estimating ODE parameters...
Detected 25 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.44, 0.7659555497733345), (0.56, 0.1878343494524111)
KS-test result: [1. 0. 1.]
Initial induction: 44, repression: 20/64
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.003
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 166.    *********
Change in noise variance: 0.7913
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 282.    *********
Change in noise variance: 0.0707
Change in x0: 0.6809
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 291.    *********
Change in noise variance: 0.0609
Change in x0: 0.3917
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 306.    *********
Change in noise variance: 0.0193
Change in x0: 0.3149
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 313.    *********
Change in noise variance: 0.0160
Change in x0: 0.2764
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 323.    *********
Change in noise variance: 0.0042
Change in x0: 0.2416
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 332.    *********
Change in noise variance: 0.0018
Change in x0: 0.2053
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 340.    *********
Change in noise variance: 0.0007
Change in x0: 0.2041
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 27 s             *********
Final: Train ELBO = -15492.789,	Test ELBO = -15448.032
Estimating ODE parameters...
Detected 84 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 84, repression: 66/150
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.029
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1009.    *********
Change in noise variance: 0.1517
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1018.    *********
Change in noise variance: 0.0034
Change in x0: 0.6934
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1027.    *********
Change in noise variance: 0.0060
Change in x0: 0.5286
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1034.    *********
Change in noise variance: 0.0179
Change in x0: 0.4225
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1041.    *********
Change in noise variance: 0.0064
Change in x0: 0.3509
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1048.    *********
Change in noise variance: 0.0042
Change in x0: 0.3036
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1055.    *********
Change in noise variance: 0.0019
Change in x0: 0.2672
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1062.    *********
Change in noise variance: 0.0008
Change in x0: 0.2463
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1069.    *********
Change in noise variance: 0.0000
Change in x0: 0.2563
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  3 m :  8 s             *********
Final: Train ELBO = -290.949,	Test ELBO = -311.508
Estimating ODE parameters...
Detected 35 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.38, 0.18558028707247598), (0.62, 0.7691498527847566)
KS-test result: [1. 0. 1.]
Initial induction: 68, repression: 13/81
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 15.    *********
Change in noise variance: 0.2443
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0150
Change in x0: 0.6972
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0030
Change in x0: 0.4751
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 32.    *********
Change in noise variance: 0.0016
Change in x0: 0.3783
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0041
Change in x0: 0.2802
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0025
Change in x0: 0.2150
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 50.    *********
Change in noise variance: 0.0008
Change in x0: 0.1977
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 55.    *********
Change in noise variance: 0.0000
Change in x0: 0.1902
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -20595.697,	Test ELBO = -20799.051
Estimating ODE parameters...
Detected 33 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 47, repression: 32/79
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 453.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.023
Average Set Size: 23
Change in noise variance: 0.1903
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1136.    *********
Change in noise variance: 0.1648
Change in x0: 1.0268
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1187.    *********
Change in noise variance: 0.0067
Change in x0: 0.6616
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1192.    *********
Change in noise variance: 0.0038
Change in x0: 0.6284
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1366.    *********
Change in noise variance: 0.0058
Change in x0: 0.4408
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1535.    *********
Change in noise variance: 0.0065
Change in x0: 0.5481
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1572.    *********
Change in noise variance: 0.0043
Change in x0: 0.5013
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1655.    *********
Change in noise variance: 0.0040
Change in x0: 0.3870
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1776.    *********
Change in noise variance: 0.0031
Change in x0: 0.3702
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1863.    *********
Change in noise variance: 0.0032
Change in x0: 0.3509
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 1870.    *********
Change in noise variance: 0.0024
Change in x0: 0.3240
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 2058.    *********
Change in noise variance: 0.0026
Change in x0: 0.2263
*********             Velocity Refinement Round 13             *********
*********     Round 13: Early Stop Triggered at epoch 2109.    *********
Change in noise variance: 0.0024
Change in x0: 0.4064
*********             Velocity Refinement Round 14             *********
*********     Round 14: Early Stop Triggered at epoch 2201.    *********
Change in noise variance: 0.0033
Change in x0: 0.2971
*********             Velocity Refinement Round 15             *********
*********     Round 15: Early Stop Triggered at epoch 2293.    *********
Change in noise variance: 0.0032
Change in x0: 0.3209
*********             Velocity Refinement Round 16             *********
*********     Round 16: Early Stop Triggered at epoch 2486.    *********
Change in noise variance: 0.0024
Change in x0: 0.2835
*********             Velocity Refinement Round 17             *********
*********     Round 17: Early Stop Triggered at epoch 2587.    *********
Change in noise variance: 0.0022
Change in x0: 0.3458
*********             Velocity Refinement Round 18             *********
*********     Round 18: Early Stop Triggered at epoch 2739.    *********
Change in noise variance: 0.0021
Change in x0: 0.2973
*********             Velocity Refinement Round 19             *********
*********     Round 19: Early Stop Triggered at epoch 2796.    *********
Change in noise variance: 0.0018
Change in x0: 0.2869
*********             Velocity Refinement Round 20             *********
*********     Round 20: Early Stop Triggered at epoch 2940.    *********
Change in noise variance: 0.0000
Change in x0: 0.3014
*********              Finished. Total Time =   0 h :  2 m :  4 s             *********
Final: Train ELBO = -1905.243,	Test ELBO = -2021.629
Estimating ODE parameters...
Detected 32 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 48, repression: 23/71
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 3, test iteration: 4
*********       Stage 1: Early Stop Triggered at epoch 6.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.025
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 13.    *********
Change in noise variance: 0.1940
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0185
Change in x0: 0.7663
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 27.    *********
Change in noise variance: 0.0148
Change in x0: 0.4259
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 34.    *********
Change in noise variance: 0.0021
Change in x0: 0.3094
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 41.    *********
Change in noise variance: 0.0039
Change in x0: 0.2825
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 48.    *********
Change in noise variance: 0.0031
Change in x0: 0.2522
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 55.    *********
Change in noise variance: 0.0025
Change in x0: 0.2267
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 62.    *********
Change in noise variance: 0.0019
Change in x0: 0.2150
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 69.    *********
Change in noise variance: 0.0013
Change in x0: 0.2022
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 76.    *********
Change in noise variance: 0.0008
Change in x0: 0.1883
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 82.    *********
Change in noise variance: 0.0000
Change in x0: 0.1784
*********             Velocity Refinement Round 12             *********
Stage 2: Early Stop Triggered at round 11.
*********              Finished. Total Time =   0 h :  0 m : 10 s             *********
Final: Train ELBO = -14711.658,	Test ELBO = -15284.556
Estimating ODE parameters...
Detected 34 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 46, repression: 23/69
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 8.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.050
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 14.    *********
Change in noise variance: 0.2069
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 20.    *********
Change in noise variance: 0.0319
Change in x0: 0.5998
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 26.    *********
Change in noise variance: 0.0025
Change in x0: 0.4039
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 32.    *********
Change in noise variance: 0.0012
Change in x0: 0.3299
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 38.    *********
Change in noise variance: 0.0007
Change in x0: 0.2737
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0000
Change in x0: 0.2441
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 50.    *********
Change in noise variance: 0.0000
Change in x0: 0.2284
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 56.    *********
Change in noise variance: 0.0000
Change in x0: 0.2224
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m : 18 s             *********
Final: Train ELBO = -15914.265,	Test ELBO = -15941.758
Estimating ODE parameters...
Detected 36 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.46, 0.815320187953141), (0.54, 0.18212739641125106)
(0.61, 0.2646005089450621), (0.39, 0.871184004409053)
KS-test result: [0. 1. 0.]
Initial induction: 34, repression: 42/76
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 15.    *********
Change in noise variance: 0.8975
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 362.    *********
Change in noise variance: 0.0808
Change in x0: 0.2958
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 405.    *********
Change in noise variance: 0.0011
Change in x0: 0.2908
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 425.    *********
Change in noise variance: 0.0007
Change in x0: 0.2674
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 432.    *********
Change in noise variance: 0.0000
Change in x0: 0.2239
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 475.    *********
Change in noise variance: 0.0000
Change in x0: 0.1955
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 482.    *********
Change in noise variance: 0.0000
Change in x0: 0.1796
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 492.    *********
Change in noise variance: 0.0000
Change in x0: 0.1643
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 502.    *********
Change in noise variance: 0.0000
Change in x0: 0.1513
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 522.    *********
Change in noise variance: 0.0000
Change in x0: 0.1452
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 35 s             *********
Final: Train ELBO = -18069.350,	Test ELBO = -17271.164
Estimating ODE parameters...
Detected 25 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.41, 0.08570857886357829), (0.59, 0.9175531644155611)
KS-test result: [2. 2. 0.]
Initial induction: 23, repression: 49/72
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 2, test iteration: 2
*********       Stage 1: Early Stop Triggered at epoch 5.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 16
*********     Round 1: Early Stop Triggered at epoch 251.    *********
Change in noise variance: 0.3936
*********             Velocity Refinement Round 2             *********

Data saving#

if SAVE_DATA:
    pd.DataFrame({"velocity": velocity_correlation}).to_parquet(
        path=DATA_DIR / DATASET / "results" / "velovae_vae_correlation.parquet"
    )