SpliceJAC benchmark on cell cycle

SpliceJAC benchmark on cell cycle#

Notebook benchmarks GRN inference using SpliceJAC on cell cycling dataset

Library imports#

import splicejac as sp

import pandas as pd

import anndata as ad

from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import get_grn_auroc_cc
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_csv from `anndata` is deprecated. Import anndata.io.read_csv instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_excel from `anndata` is deprecated. Import anndata.io.read_excel instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_hdf from `anndata` is deprecated. Import anndata.io.read_hdf instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_loom from `anndata` is deprecated. Import anndata.io.read_loom instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_mtx from `anndata` is deprecated. Import anndata.io.read_mtx instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_text from `anndata` is deprecated. Import anndata.io.read_text instead.
  warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_umi_tools from `anndata` is deprecated. Import anndata.io.read_umi_tools instead.
  warnings.warn(msg, FutureWarning)

Constants#

DATASET = "cell_cycle"
SAVE_DATA = True
if SAVE_DATA:
    (DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)

Data loading#

adata = ad.io.read_h5ad(DATA_DIR / DATASET / "processed" / "adata_processed.h5ad")
adata
AnnData object with n_obs × n_vars = 1146 × 395
    obs: 'phase', 'fucci_time', 'initial_size_unspliced', 'initial_size_spliced', 'initial_size', 'n_counts'
    var: 'ensum_id', 'gene_count_corr', 'means', 'dispersions', 'dispersions_norm', 'highly_variable', 'velocity_gamma', 'velocity_qreg_ratio', 'velocity_r2', 'velocity_genes'
    uns: 'log1p', 'neighbors', 'pca', 'umap', 'velocity_params'
    obsm: 'X_pca', 'X_umap'
    varm: 'PCs', 'true_skeleton'
    layers: 'Ms', 'Mu', 'spliced', 'total', 'unspliced', 'velocity'
    obsp: 'connectivities', 'distances'

GRN pipeline#

## We ignore the cell label information and assume all cells is the same label due to we use cellline dataset
adata.obs["clusters"] = "0"
n = len(adata.var_names)

sp.tl.estimate_jacobian(adata, n_top_genes=adata.shape[1], min_shared_counts=0)
grn_estimate = adata.uns["average_jac"]["0"][0][0:n, n:].copy()

grn_correlation = [get_grn_auroc_cc(ground_truth=adata.varm["true_skeleton"].toarray(), estimated=grn_estimate.T)]
WARNING: Did not normalize X as it looks processed already. To enforce normalization, set `enforce=True`.
WARNING: Did not normalize spliced as it looks processed already. To enforce normalization, set `enforce=True`.
WARNING: Did not normalize unspliced as it looks processed already. To enforce normalization, set `enforce=True`.
Extracted 395 highly variable genes.
WARNING: adata.X seems to be already log-transformed.
Logarithmized X.
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/scvelo/preprocessing/utils.py:705: DeprecationWarning: `log1p` is deprecated since scVelo v0.3.0 and will be removed in a future version. Please use `log1p` from `scanpy.pp` instead.
  log1p(adata)
Running quick regression...
Running subset regression on the 0 cluster...
if SAVE_DATA:
    pd.DataFrame({"grn": grn_correlation}).to_parquet(
        path=DATA_DIR / DATASET / "results" / "splicejac_correlation.parquet"
    )