veloVI benchmark on toy GRN#
Notebook benchmarks velocity and latent time inference using veloVI on toy GRN data.
Library imports#
from tqdm import tqdm
import numpy as np
import pandas as pd
from velovi import preprocess_data, VELOVI
from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import (
get_data_subset,
get_time_correlation,
get_velocity_correlation,
set_output,
)
from rgv_tools.core import read_as_dask
Constants#
DATASET = "toy_grn"
SAVE_DATA = True
if SAVE_DATA:
(DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)
Function definitions#
Data loading#
adata = read_as_dask(
store=DATA_DIR / DATASET / "raw" / "adata.zarr", layers=["unspliced", "Mu", "spliced", "Ms", "true_velocity"]
)
adata
Velocity pipeline#
velocity_correlation = []
time_correlation = []
parameters = []
for dataset in tqdm(adata.obs["dataset"].cat.categories):
adata_subset = get_data_subset(adata=adata, column="dataset", group=dataset, uns_keys=["true_beta", "true_gamma"])
# Data preprocessing
adata_subset = preprocess_data(adata_subset, filter_on_r2=False)
VELOVI.setup_anndata(adata_subset, spliced_layer="Ms", unspliced_layer="Mu")
vae = VELOVI(adata_subset)
vae.train()
set_output(adata_subset, vae, n_samples=30)
estimated_velocity = (
adata_subset.layers["unspliced"] * adata_subset.var["fit_beta"].values
- adata_subset.layers["spliced"] * adata_subset.var["fit_gamma"].values
)
velocity_correlation.append(
get_velocity_correlation(
ground_truth=adata_subset.layers["true_velocity"], estimated=estimated_velocity, aggregation=np.mean
)
)
time_correlation.append(
get_time_correlation(
ground_truth=adata_subset.obs["true_time"], estimated=adata_subset.layers["fit_t"].mean(axis=1)
)
)
Data saving#
if SAVE_DATA:
pd.DataFrame({"velocity": velocity_correlation, "time": time_correlation}).to_parquet(
path=DATA_DIR / DATASET / "results" / "velovi_correlation.parquet"
)