RegVelo benchmark on toy GRN#
Notebook benchmarks velocity, latent time and GRN inference using RegVelo on toy GRN data.
Library imports#
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
from regvelo import REGVELOVI
from velovi import preprocess_data
from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import (
get_data_subset,
get_grn_auroc,
get_time_correlation,
get_velocity_correlation,
set_output,
)
from rgv_tools.core import read_as_dask
Constants#
DATASET = "toy_grn"
SAVE_DATA = True
if SAVE_DATA:
(DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)
Function definitions#
Data loading#
adata = read_as_dask(
store=DATA_DIR / DATASET / "raw" / "adata.zarr", layers=["unspliced", "Mu", "spliced", "Ms", "true_velocity"]
)
adata
Velocity pipeline#
velocity_correlation = []
time_correlation = []
grn_correlation = []
for dataset in tqdm(adata.obs["dataset"].cat.categories):
adata_subset = get_data_subset(
adata=adata, column="dataset", group=dataset, uns_keys=["true_beta", "true_gamma", "true_K"]
)
adata_subset.uns["regulators"] = adata_subset.var.index.values
adata_subset.uns["targets"] = adata_subset.var.index.values
adata_subset.uns["skeleton"] = np.ones((adata_subset.n_vars, adata_subset.n_vars))
adata_subset.uns["network"] = np.ones((adata_subset.n_vars, adata_subset.n_vars))
# Data preprocessing
adata_subset = preprocess_data(adata_subset, filter_on_r2=False)
W = adata_subset.uns["skeleton"].copy()
W = torch.tensor(W).int()
REGVELOVI.setup_anndata(adata_subset, spliced_layer="Ms", unspliced_layer="Mu")
vae = REGVELOVI(adata_subset, W=W, lam2=1, soft_constraint=False, simple_dynamics=True)
vae.train()
set_output(adata_subset, vae, n_samples=30, batch_size=adata.n_obs)
estimated_velocity = (
adata_subset.layers["unspliced"] * adata_subset.var["fit_beta"].values
- adata_subset.layers["spliced"] * adata_subset.var["fit_gamma"].values
)
velocity_correlation.append(
get_velocity_correlation(
ground_truth=adata_subset.layers["true_velocity"], estimated=estimated_velocity, aggregation=np.mean
)
)
time_correlation.append(
get_time_correlation(
ground_truth=adata_subset.obs["true_time"], estimated=adata_subset.layers["fit_t"].mean(axis=1)
)
)
grn_estimate = vae.module.v_encoder.GRN_Jacobian(torch.tensor(adata_subset.layers["spliced"].mean(0)).to("cuda:0"))
grn_estimate = grn_estimate.cpu().detach().numpy()
grn_correlation.append(get_grn_auroc(ground_truth=adata_subset.uns["true_K"], estimated=grn_estimate))
Data saving#
if SAVE_DATA:
pd.DataFrame({"velocity": velocity_correlation, "time": time_correlation, "grn": grn_correlation}).to_parquet(
path=DATA_DIR / DATASET / "results" / "regvelo_correlation.parquet"
)