scVelo benchmark on dyngen data#
Notebook benchmarks velocity and latent time inference using scVelo on dyngen-generated data.
Library imports#
import numpy as np
import pandas as pd
import anndata as ad
import scvelo as scv
from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import get_time_correlation, get_velocity_correlation
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_csv from `anndata` is deprecated. Import anndata.io.read_csv instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_excel from `anndata` is deprecated. Import anndata.io.read_excel instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_hdf from `anndata` is deprecated. Import anndata.io.read_hdf instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_loom from `anndata` is deprecated. Import anndata.io.read_loom instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_mtx from `anndata` is deprecated. Import anndata.io.read_mtx instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_text from `anndata` is deprecated. Import anndata.io.read_text instead.
warnings.warn(msg, FutureWarning)
/home/icb/weixu.wang/miniconda3/envs/regvelo_test/lib/python3.10/site-packages/anndata/utils.py:429: FutureWarning: Importing read_umi_tools from `anndata` is deprecated. Import anndata.io.read_umi_tools instead.
warnings.warn(msg, FutureWarning)
General settings#
scv.settings.verbosity = 0
Constants#
DATASET = "dyngen"
SAVE_DATA = True
if SAVE_DATA:
(DATA_DIR / DATASET / "results").mkdir(parents=True, exist_ok=True)
Velocity pipeline#
velocity_correlation = []
time_correlation = []
for filename in (DATA_DIR / DATASET / "processed").iterdir():
if filename.suffix != ".zarr":
continue
adata = ad.io.read_zarr(filename)
# Parameter inference
scv.tl.recover_dynamics(adata, fit_scaling=False, var_names=adata.var_names, n_jobs=1)
# Velocity inferene
adata.var["fit_scaling"] = 1.0
scv.tl.velocity(adata, mode="dynamical", min_likelihood=-np.inf, min_r2=None)
velocity_correlation.append(
get_velocity_correlation(
ground_truth=adata.layers["true_velocity"], estimated=adata.layers["velocity"], aggregation=np.mean
)
)
## calculate per gene latent time correlation
time_corr = [
get_time_correlation(ground_truth=adata.obs["true_time"], estimated=adata.layers["fit_t"][:, i])
for i in range(adata.layers["fit_t"].shape[1])
]
time_correlation.append(np.mean(time_corr))
Data saving#
if SAVE_DATA:
pd.DataFrame({"velocity": velocity_correlation, "time": time_correlation}).to_parquet(
path=DATA_DIR / DATASET / "results" / "scvelo_correlation.parquet"
)