VeloVAE (fullvb) benchmark on dyngen data

VeloVAE (fullvb) benchmark on dyngen data#

Notebook benchmarks velocity and latent time inference using VeloVAE (fullvb) on dyngen-generated data.

Library imports#

import velovae as vv

import numpy as np
import pandas as pd
import torch

import anndata as ad
import scvelo as scv

from rgv_tools import DATA_DIR
from rgv_tools.benchmarking import get_velocity_correlation
/home/icb/yifan.chen/miniconda3/envs/regvelo-py310-velovae/lib/python3.10/site-packages/velovae/model/model_util.py:12: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
  from tqdm.autonotebook import trange

General settings#

scv.settings.verbosity = 3
COMPLEXITY = "complexity_1"

Constants#

torch.manual_seed(0)
np.random.seed(0)
DATASET = "dyngen"
SAVE_DATA = True
if SAVE_DATA:
    (DATA_DIR / DATASET / COMPLEXITY / "results").mkdir(parents=True, exist_ok=True)
    (DATA_DIR / DATASET / COMPLEXITY / "processed" / "velovae_fullvb_vae").mkdir(parents=True, exist_ok=True)
SAVE_DATASETS = True
if SAVE_DATASETS:
    (DATA_DIR / DATASET / COMPLEXITY / "trained_velovae_fullvb").mkdir(parents=True, exist_ok=True)

Velocity pipeline#

velocity_correlation = []

cnt = 0
for filename in (DATA_DIR / DATASET / COMPLEXITY / "processed").iterdir():
    if filename.suffix != ".zarr":
        continue

    print(f"Run {cnt}, file {filename}.")
    adata = ad.io.read_zarr(filename)

    try:
        rate_prior = {"alpha": (0.0, 1.0), "beta": (0.0, 0.5), "gamma": (0.0, 0.5)}
        vae = vv.VAE(adata, tmax=20, dim_z=5, device="cuda:0", full_vb=True, rate_prior=rate_prior)
        config = {}
        vae.train(adata, config=config, plot=False, embed="pca")

        simulation_id = int(filename.stem.removeprefix("simulation_"))
        # Output velocity to adata object
        vae.save_anndata(
            adata,
            "fullvb",
            DATA_DIR / DATASET / COMPLEXITY / "processed" / "velovae_fullvb_vae",
            file_name=f"velovae_fullvb_{simulation_id}.h5ad",
        )

        adata.layers["velocity"] = adata.layers["fullvb_velocity"].copy()

        # save data
        adata.write_zarr(DATA_DIR / DATASET / COMPLEXITY / "trained_velovae_fullvb" / f"trained_{simulation_id}.zarr")

        velocity_correlation.append(
            get_velocity_correlation(
                ground_truth=adata.layers["true_velocity"], estimated=adata.layers["velocity"], aggregation=np.mean
            )
        )

    except Exception as e:  # noqa: BLE001
        # Append np.nan in case of an error and optionally log the error
        print(f"An error occurred: {e}")
        velocity_correlation.append(np.nan)

    cnt += 1
Run 0, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_29.zarr.
Estimating ODE parameters...
Detected 347 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 245, repression: 117/362
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 314.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.147
Average Set Size: 21
*********     Round 1: Early Stop Triggered at epoch 530.    *********
Change in noise variance: 0.0336
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 579.    *********
Change in noise variance: 0.0112
Change in x0: 0.4009
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 605.    *********
Change in noise variance: 0.0027
Change in x0: 0.2125
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 631.    *********
Change in noise variance: 0.0019
Change in x0: 0.1521
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 638.    *********
Change in noise variance: 0.0005
Change in x0: 0.1149
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 669.    *********
Change in noise variance: 0.0000
Change in x0: 0.1100
*********             Velocity Refinement Round 7             *********
Stage 2: Early Stop Triggered at round 6.
*********              Finished. Total Time =   0 h :  1 m : 14 s             *********
Final: Train ELBO = 449.825,	Test ELBO = 438.798
Run 1, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_14.zarr.
Estimating ODE parameters...
Detected 594 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.48, 0.8228239539949498), (0.52, 0.3684353137855576)
KS-test result: [0. 1. 1.]
Initial induction: 484, repression: 180/664
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 219.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.034
Average Set Size: 49
*********     Round 1: Early Stop Triggered at epoch 611.    *********
Change in noise variance: 0.1225
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 667.    *********
Change in noise variance: 0.0119
Change in x0: 1.1951
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 731.    *********
Change in noise variance: 0.0223
Change in x0: 0.4867
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 765.    *********
Change in noise variance: 0.0057
Change in x0: 0.2543
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 792.    *********
Change in noise variance: 0.0003
Change in x0: 0.1477
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 843.    *********
Change in noise variance: 0.0000
Change in x0: 0.1231
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 885.    *********
Change in noise variance: 0.0000
Change in x0: 0.1125
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 904.    *********
Change in noise variance: 0.0000
Change in x0: 0.0999
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 951.    *********
Change in noise variance: 0.0000
Change in x0: 0.0826
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1020.    *********
Change in noise variance: 0.0000
Change in x0: 0.0774
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  1 m : 21 s             *********
Final: Train ELBO = -328.411,	Test ELBO = -399.075
Run 2, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_24.zarr.
Estimating ODE parameters...
Detected 461 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.7142859350405649), (0.41, 0.232624469824922)
(0.52, 0.8547149661103973), (0.48, 0.31938394948827814)
KS-test result: [0. 0. 1.]
Initial induction: 431, repression: 295/726
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.027
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 18.    *********
Change in noise variance: 0.2489
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 27.    *********
Change in noise variance: 0.0050
Change in x0: 0.7320
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0006
Change in x0: 0.4852
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 45.    *********
Change in noise variance: 0.0000
Change in x0: 0.4468
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 54.    *********
Change in noise variance: 0.0000
Change in x0: 0.3849
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 63.    *********
Change in noise variance: 0.0000
Change in x0: 0.3637
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 72.    *********
Change in noise variance: 0.0000
Change in x0: 0.3499
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 81.    *********
Change in noise variance: 0.0000
Change in x0: 0.3190
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 90.    *********
Change in noise variance: 0.0000
Change in x0: 0.2829
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 99.    *********
Change in noise variance: 0.0000
Change in x0: 0.2803
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  0 m : 11 s             *********
Final: Train ELBO = -26919.023,	Test ELBO = -26492.256
Run 3, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_28.zarr.
Estimating ODE parameters...
Detected 535 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.39, 0.3808448852305928), (0.61, 0.852512757686449)
(0.46, 0.3875805469813231), (0.54, 0.7668672821296293)
KS-test result: [0. 0. 1.]
Initial induction: 374, repression: 190/564
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.005
Average Set Size: 22
Change in noise variance: 0.0401
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1541.    *********
Change in noise variance: 0.0371
Change in x0: 0.3644
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1573.    *********
Change in noise variance: 0.0020
Change in x0: 0.2457
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1580.    *********
Change in noise variance: 0.0007
Change in x0: 0.2023
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1587.    *********
Change in noise variance: 0.0000
Change in x0: 0.1785
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1594.    *********
Change in noise variance: 0.0000
Change in x0: 0.1505
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1631.    *********
Change in noise variance: 0.0000
Change in x0: 0.1245
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1642.    *********
Change in noise variance: 0.0000
Change in x0: 0.1042
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1649.    *********
Change in noise variance: 0.0000
Change in x0: 0.0983
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  2 m : 12 s             *********
Final: Train ELBO = 468.052,	Test ELBO = 368.735
Run 4, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_6.zarr.
Estimating ODE parameters...
Detected 537 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.8793261681749559), (0.38, 0.26633114834984656)
(0.47, 0.7331318775651423), (0.53, 0.2511832966547218)
(0.47, 0.2994057734262461), (0.53, 0.8553113871195344)
KS-test result: [0. 0. 0.]
Initial induction: 404, repression: 343/747
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.039
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1332.    *********
Change in noise variance: 0.1963
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1529.    *********
Change in noise variance: 0.0139
Change in x0: 0.7732
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1565.    *********
Change in noise variance: 0.0039
Change in x0: 0.5783
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1644.    *********
Change in noise variance: 0.0039
Change in x0: 0.5012
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1668.    *********
Change in noise variance: 0.0016
Change in x0: 0.3899
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1682.    *********
Change in noise variance: 0.0012
Change in x0: 0.3248
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1704.    *********
Change in noise variance: 0.0008
Change in x0: 0.3053
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1725.    *********
Change in noise variance: 0.0000
Change in x0: 0.2925
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1732.    *********
Change in noise variance: 0.0000
Change in x0: 0.2847
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  2 m : 20 s             *********
Final: Train ELBO = -1471.624,	Test ELBO = -1560.258
Run 5, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_21.zarr.
Estimating ODE parameters...
Detected 398 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.49, 0.2987033192902373), (0.51, 0.7362158867554179)
KS-test result: [1. 1. 0.]
Initial induction: 334, repression: 127/461
Learning Rate based on Data Sparsity: 0.0001
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.120
Average Set Size: 21
*********     Round 1: Early Stop Triggered at epoch 1484.    *********
Change in noise variance: 0.0695
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1640.    *********
Change in noise variance: 0.0120
Change in x0: 0.3772
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1656.    *********
Change in noise variance: 0.0045
Change in x0: 0.3035
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1762.    *********
Change in noise variance: 0.0031
Change in x0: 0.1700
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1821.    *********
Change in noise variance: 0.0010
Change in x0: 0.1158
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1838.    *********
Change in noise variance: 0.0000
Change in x0: 0.0891
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1864.    *********
Change in noise variance: 0.0000
Change in x0: 0.0845
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  2 m : 25 s             *********
Final: Train ELBO = 640.215,	Test ELBO = 555.901
Run 6, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_15.zarr.
Estimating ODE parameters...
Detected 404 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.62, 0.8595902088131244), (0.38, 0.34409679076346833)
(0.53, 0.3502039273194398), (0.47, 0.8163727115188388)
KS-test result: [0. 1. 0.]
Initial induction: 300, repression: 144/444
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 96.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.229
Average Set Size: 106
*********     Round 1: Early Stop Triggered at epoch 468.    *********
Change in noise variance: 0.0993
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 485.    *********
Change in noise variance: 0.0213
Change in x0: 1.9274
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 516.    *********
Change in noise variance: 0.0172
Change in x0: 0.6222
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 583.    *********
Change in noise variance: 0.0014
Change in x0: 0.1822
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 619.    *********
Change in noise variance: 0.0002
Change in x0: 0.1456
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 628.    *********
Change in noise variance: 0.0000
Change in x0: 0.1414
*********             Velocity Refinement Round 7             *********
Stage 2: Early Stop Triggered at round 6.
*********              Finished. Total Time =   0 h :  0 m : 49 s             *********
Final: Train ELBO = -298.772,	Test ELBO = -338.227
Run 7, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_9.zarr.
Estimating ODE parameters...
Detected 335 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.48, 0.37222433101870206), (0.52, 0.7806380011489331)
KS-test result: [1. 0. 1.]
Initial induction: 263, repression: 97/360
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.122
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 1284.    *********
Change in noise variance: 0.0227
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1355.    *********
Change in noise variance: 0.0034
Change in x0: 0.1830
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1424.    *********
Change in noise variance: 0.0002
Change in x0: 0.0994
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1503.    *********
Change in noise variance: 0.0000
Change in x0: 0.0784
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1515.    *********
Change in noise variance: 0.0000
Change in x0: 0.0766
*********             Velocity Refinement Round 6             *********
Stage 2: Early Stop Triggered at round 5.
*********              Finished. Total Time =   0 h :  1 m : 58 s             *********
Final: Train ELBO = 493.208,	Test ELBO = 467.782
Run 8, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_12.zarr.
Estimating ODE parameters...
Detected 387 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.8421974990559944), (0.41, 0.31546207430654916)
(0.58, 0.7390920693790617), (0.42, 0.1625623840425744)
(0.42, 0.2930600982138266), (0.58, 0.8332787740830282)
KS-test result: [0. 0. 0.]
Initial induction: 310, repression: 205/515
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 5, test iteration: 8
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 17
*********     Round 1: Early Stop Triggered at epoch 18.    *********
Change in noise variance: 0.1949
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 27.    *********
Change in noise variance: 0.0019
Change in x0: 0.6673
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 36.    *********
Change in noise variance: 0.0007
Change in x0: 0.5220
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 45.    *********
Change in noise variance: 0.0000
Change in x0: 0.4418
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 54.    *********
Change in noise variance: 0.0000
Change in x0: 0.3789
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 63.    *********
Change in noise variance: 0.0000
Change in x0: 0.3652
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 72.    *********
Change in noise variance: 0.0000
Change in x0: 0.2934
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 81.    *********
Change in noise variance: 0.0000
Change in x0: 0.2694
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 90.    *********
Change in noise variance: 0.0000
Change in x0: 0.2871
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  0 m :  8 s             *********
Final: Train ELBO = -23497.715,	Test ELBO = -24467.719
Run 9, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_19.zarr.
Estimating ODE parameters...
Detected 244 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.46, 0.3700403220994146), (0.54, 0.8355761602987493)
(0.60, 0.33766490672002036), (0.40, 0.7567183237756051)
KS-test result: [0. 1. 0.]
Initial induction: 164, repression: 102/266
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.014
Average Set Size: 21
*********     Round 1: Early Stop Triggered at epoch 1206.    *********
Change in noise variance: 0.0339
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1363.    *********
Change in noise variance: 0.0081
Change in x0: 0.3134
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1370.    *********
Change in noise variance: 0.0016
Change in x0: 0.2070
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1446.    *********
Change in noise variance: 0.0008
Change in x0: 0.1656
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1453.    *********
Change in noise variance: 0.0000
Change in x0: 0.1375
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1537.    *********
Change in noise variance: 0.0000
Change in x0: 0.1147
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1544.    *********
Change in noise variance: 0.0000
Change in x0: 0.1026
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1593.    *********
Change in noise variance: 0.0000
Change in x0: 0.0901
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1610.    *********
Change in noise variance: 0.0000
Change in x0: 0.0793
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1629.    *********
Change in noise variance: 0.0000
Change in x0: 0.0719
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  2 m :  4 s             *********
Final: Train ELBO = 268.584,	Test ELBO = 244.117
Run 10, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_4.zarr.
Estimating ODE parameters...
Detected 454 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.8009445508520957), (0.41, 0.36772632850943016)
KS-test result: [1. 0. 1.]
Initial induction: 368, repression: 111/479
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 731.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.142
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 907.    *********
Change in noise variance: 0.0464
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 973.    *********
Change in noise variance: 0.0051
Change in x0: 0.2664
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1014.    *********
Change in noise variance: 0.0007
Change in x0: 0.1456
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1025.    *********
Change in noise variance: 0.0000
Change in x0: 0.1260
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1094.    *********
Change in noise variance: 0.0000
Change in x0: 0.1118
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1165.    *********
Change in noise variance: 0.0000
Change in x0: 0.1064
*********             Velocity Refinement Round 7             *********
Stage 2: Early Stop Triggered at round 6.
*********              Finished. Total Time =   0 h :  1 m : 33 s             *********
Final: Train ELBO = 587.956,	Test ELBO = 546.589
Run 11, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_13.zarr.
Estimating ODE parameters...
Detected 502 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 315, repression: 199/514
Learning Rate based on Data Sparsity: 0.0004
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 579.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.049
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 900.    *********
Change in noise variance: 0.0355
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 962.    *********
Change in noise variance: 0.0139
Change in x0: 0.4108
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 969.    *********
Change in noise variance: 0.0025
Change in x0: 0.2712
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1051.    *********
Change in noise variance: 0.0009
Change in x0: 0.2049
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1075.    *********
Change in noise variance: 0.0000
Change in x0: 0.1712
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1106.    *********
Change in noise variance: 0.0000
Change in x0: 0.1455
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1125.    *********
Change in noise variance: 0.0000
Change in x0: 0.1236
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1132.    *********
Change in noise variance: 0.0000
Change in x0: 0.1053
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1151.    *********
Change in noise variance: 0.0000
Change in x0: 0.0940
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1167.    *********
Change in noise variance: 0.0000
Change in x0: 0.0862
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  1 m : 32 s             *********
Final: Train ELBO = 571.016,	Test ELBO = 484.392
Run 12, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_2.zarr.
Estimating ODE parameters...
Detected 424 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.63, 0.7924425318102936), (0.37, 0.25047287353531905)
(0.32, 0.39095042714182476), (0.68, 0.9377617670621354)
(0.51, 0.35416668477069335), (0.49, 0.8927600435275674)
KS-test result: [0. 0. 0.]
Initial induction: 431, repression: 259/690
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.026
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1012.    *********
Change in noise variance: 0.2075
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1021.    *********
Change in noise variance: 0.0034
Change in x0: 0.9044
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1030.    *********
Change in noise variance: 0.0019
Change in x0: 0.6653
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1039.    *********
Change in noise variance: 0.0003
Change in x0: 0.5567
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1046.    *********
Change in noise variance: 0.0000
Change in x0: 0.4385
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1053.    *********
Change in noise variance: 0.0000
Change in x0: 0.3859
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1060.    *********
Change in noise variance: 0.0000
Change in x0: 0.3471
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1067.    *********
Change in noise variance: 0.0000
Change in x0: 0.3200
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1074.    *********
Change in noise variance: 0.0000
Change in x0: 0.3100
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  1 m : 30 s             *********
Final: Train ELBO = -1431.609,	Test ELBO = -1512.579
Run 13, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_16.zarr.
Estimating ODE parameters...
Detected 481 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 325, repression: 211/536
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.078
Average Set Size: 20
Change in noise variance: 0.0685
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1549.    *********
Change in noise variance: 0.0195
Change in x0: 0.2868
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1613.    *********
Change in noise variance: 0.0019
Change in x0: 0.2189
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1700.    *********
Change in noise variance: 0.0004
Change in x0: 0.1530
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1734.    *********
Change in noise variance: 0.0000
Change in x0: 0.1245
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1780.    *********
Change in noise variance: 0.0000
Change in x0: 0.1096
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1862.    *********
Change in noise variance: 0.0000
Change in x0: 0.0926
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1901.    *********
Change in noise variance: 0.0000
Change in x0: 0.0744
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1922.    *********
Change in noise variance: 0.0000
Change in x0: 0.0624
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 2086.    *********
Change in noise variance: 0.0000
Change in x0: 0.0577
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  2 m : 43 s             *********
Final: Train ELBO = 732.020,	Test ELBO = 631.934
Run 14, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_1.zarr.
Estimating ODE parameters...
Detected 345 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 232, repression: 136/368
Learning Rate based on Data Sparsity: 0.0004
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.029
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1422.    *********
Change in noise variance: 0.0486
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1458.    *********
Change in noise variance: 0.0091
Change in x0: 0.3043
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1482.    *********
Change in noise variance: 0.0005
Change in x0: 0.1621
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1568.    *********
Change in noise variance: 0.0000
Change in x0: 0.1108
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1575.    *********
Change in noise variance: 0.0000
Change in x0: 0.0903
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1586.    *********
Change in noise variance: 0.0000
Change in x0: 0.0703
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1610.    *********
Change in noise variance: 0.0000
Change in x0: 0.0597
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1621.    *********
Change in noise variance: 0.0000
Change in x0: 0.0533
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  2 m :  7 s             *********
Final: Train ELBO = 558.691,	Test ELBO = 509.981
Run 15, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_18.zarr.
Estimating ODE parameters...
Detected 327 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.51, 0.3274513378440137), (0.49, 0.8157796920163066)
KS-test result: [1. 1. 0.]
Initial induction: 264, repression: 100/364
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.034
Average Set Size: 20
Change in noise variance: 0.0658
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1572.    *********
Change in noise variance: 0.0105
Change in x0: 0.2625
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1616.    *********
Change in noise variance: 0.0015
Change in x0: 0.1819
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1725.    *********
Change in noise variance: 0.0004
Change in x0: 0.1387
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1816.    *********
Change in noise variance: 0.0000
Change in x0: 0.1053
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1943.    *********
Change in noise variance: 0.0000
Change in x0: 0.0764
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 2144.    *********
Change in noise variance: 0.0000
Change in x0: 0.0618
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 2200.    *********
Change in noise variance: 0.0000
Change in x0: 0.0553
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  2 m : 49 s             *********
Final: Train ELBO = 699.190,	Test ELBO = 641.937
Run 16, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_5.zarr.
Estimating ODE parameters...
Detected 262 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 182, repression: 100/282
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.141
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 1274.    *********
Change in noise variance: 0.0475
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1396.    *********
Change in noise variance: 0.0169
Change in x0: 0.2664
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1455.    *********
Change in noise variance: 0.0008
Change in x0: 0.1681
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1489.    *********
Change in noise variance: 0.0000
Change in x0: 0.1470
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1496.    *********
Change in noise variance: 0.0000
Change in x0: 0.1528
*********             Velocity Refinement Round 6             *********
Stage 2: Early Stop Triggered at round 5.
*********              Finished. Total Time =   0 h :  1 m : 57 s             *********
Final: Train ELBO = 238.936,	Test ELBO = 203.147
Run 17, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_10.zarr.
Estimating ODE parameters...
Detected 306 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.44, 0.21427183785803913), (0.56, 0.8053766111264617)
(0.65, 0.8997967816308998), (0.35, 0.35802780150367175)
KS-test result: [0. 1. 0.]
Initial induction: 379, repression: 169/548
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.035
Average Set Size: 19
*********     Round 1: Early Stop Triggered at epoch 30.    *********
Change in noise variance: 0.2346
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 37.    *********
Change in noise variance: 0.0073
Change in x0: 0.6161
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 44.    *********
Change in noise variance: 0.0039
Change in x0: 0.5040
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 51.    *********
Change in noise variance: 0.0018
Change in x0: 0.4250
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 60.    *********
Change in noise variance: 0.0007
Change in x0: 0.3543
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 67.    *********
Change in noise variance: 0.0000
Change in x0: 0.3236
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 74.    *********
Change in noise variance: 0.0000
Change in x0: 0.2708
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 81.    *********
Change in noise variance: 0.0000
Change in x0: 0.2704
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m :  9 s             *********
Final: Train ELBO = -24367.305,	Test ELBO = -24067.287
Run 18, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_8.zarr.
Estimating ODE parameters...
Detected 397 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 0 to repressive
Initial induction: 295, repression: 167/462
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.024
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1431.    *********
Change in noise variance: 0.0907
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1510.    *********
Change in noise variance: 0.0053
Change in x0: 0.2621
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1557.    *********
Change in noise variance: 0.0008
Change in x0: 0.1654
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1614.    *********
Change in noise variance: 0.0000
Change in x0: 0.1322
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1665.    *********
Change in noise variance: 0.0000
Change in x0: 0.1163
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1672.    *********
Change in noise variance: 0.0000
Change in x0: 0.1057
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1734.    *********
Change in noise variance: 0.0000
Change in x0: 0.0897
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1801.    *********
Change in noise variance: 0.0000
Change in x0: 0.0756
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1828.    *********
Change in noise variance: 0.0000
Change in x0: 0.0694
*********             Velocity Refinement Round 10             *********
Stage 2: Early Stop Triggered at round 9.
*********              Finished. Total Time =   0 h :  2 m : 23 s             *********
Final: Train ELBO = 892.707,	Test ELBO = 736.356
Run 19, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_11.zarr.
Estimating ODE parameters...
Detected 346 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.59, 0.8267164296804612), (0.41, 0.36831379905588)
KS-test result: [1. 0. 1.]
Initial induction: 291, repression: 86/377
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.141
Average Set Size: 18
*********     Round 1: Early Stop Triggered at epoch 1367.    *********
Change in noise variance: 0.0236
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1409.    *********
Change in noise variance: 0.0025
Change in x0: 0.1406
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1423.    *********
Change in noise variance: 0.0006
Change in x0: 0.0880
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1472.    *********
Change in noise variance: 0.0000
Change in x0: 0.0785
*********             Velocity Refinement Round 5             *********
Stage 2: Early Stop Triggered at round 4.
*********              Finished. Total Time =   0 h :  1 m : 55 s             *********
Final: Train ELBO = 504.837,	Test ELBO = 472.133
Run 20, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_27.zarr.
Estimating ODE parameters...
Detected 320 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.39, 0.28728312975125536), (0.61, 0.8005818061651941)
KS-test result: [0. 1. 1.]
Initial induction: 289, repression: 92/381
Learning Rate based on Data Sparsity: 0.0002
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.019
Average Set Size: 21
Change in noise variance: 0.0556
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1544.    *********
Change in noise variance: 0.0453
Change in x0: 0.3729
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1611.    *********
Change in noise variance: 0.0041
Change in x0: 0.2411
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1618.    *********
Change in noise variance: 0.0014
Change in x0: 0.1940
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1625.    *********
Change in noise variance: 0.0005
Change in x0: 0.1519
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1644.    *********
Change in noise variance: 0.0000
Change in x0: 0.1335
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1655.    *********
Change in noise variance: 0.0000
Change in x0: 0.1172
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1664.    *********
Change in noise variance: 0.0000
Change in x0: 0.1075
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  2 m :  9 s             *********
Final: Train ELBO = 331.373,	Test ELBO = 255.813
Run 21, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_23.zarr.
Estimating ODE parameters...
Detected 326 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.51, 0.7911187894111076), (0.49, 0.37965464284669165)
KS-test result: [1. 1. 0.]
Initial induction: 264, repression: 95/359
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 754.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.144
Average Set Size: 19
*********     Round 1: Early Stop Triggered at epoch 921.    *********
Change in noise variance: 0.0380
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 955.    *********
Change in noise variance: 0.0062
Change in x0: 0.2466
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 991.    *********
Change in noise variance: 0.0002
Change in x0: 0.1567
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 998.    *********
Change in noise variance: 0.0000
Change in x0: 0.1274
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1010.    *********
Change in noise variance: 0.0000
Change in x0: 0.1248
*********             Velocity Refinement Round 6             *********
Stage 2: Early Stop Triggered at round 5.
*********              Finished. Total Time =   0 h :  1 m : 20 s             *********
Final: Train ELBO = 486.095,	Test ELBO = 463.734
Run 22, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_17.zarr.
Estimating ODE parameters...
Detected 410 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 284, repression: 166/450
Learning Rate based on Data Sparsity: 0.0004
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.053
Average Set Size: 23
*********     Round 1: Early Stop Triggered at epoch 1434.    *********
Change in noise variance: 0.0677
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1681.    *********
Change in noise variance: 0.0075
Change in x0: 0.2493
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1787.    *********
Change in noise variance: 0.0007
Change in x0: 0.1443
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1848.    *********
Change in noise variance: 0.0000
Change in x0: 0.1204
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1955.    *********
Change in noise variance: 0.0000
Change in x0: 0.0924
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 2036.    *********
Change in noise variance: 0.0000
Change in x0: 0.0691
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 2213.    *********
Change in noise variance: 0.0000
Change in x0: 0.0653
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  2 m : 51 s             *********
Final: Train ELBO = 853.947,	Test ELBO = 717.942
Run 23, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_30.zarr.
Estimating ODE parameters...
Detected 404 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.64, 0.7874540650534966), (0.36, 0.30795453403738815)
(0.67, 0.8559480355355736), (0.33, 0.3295921295742867)
KS-test result: [0. 0. 1.]
Initial induction: 337, repression: 128/465
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.029
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1271.    *********
Change in noise variance: 0.0555
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1280.    *********
Change in noise variance: 0.0262
Change in x0: 0.3258
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1312.    *********
Change in noise variance: 0.0027
Change in x0: 0.2685
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1338.    *********
Change in noise variance: 0.0012
Change in x0: 0.2391
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1362.    *********
Change in noise variance: 0.0015
Change in x0: 0.2168
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1413.    *********
Change in noise variance: 0.0014
Change in x0: 0.1821
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1430.    *********
Change in noise variance: 0.0011
Change in x0: 0.1758
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1447.    *********
Change in noise variance: 0.0011
Change in x0: 0.1639
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1469.    *********
Change in noise variance: 0.0006
Change in x0: 0.1284
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1476.    *********
Change in noise variance: 0.0000
Change in x0: 0.1102
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 1483.    *********
Change in noise variance: 0.0000
Change in x0: 0.0967
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 1499.    *********
Change in noise variance: 0.0000
Change in x0: 0.0821
*********             Velocity Refinement Round 13             *********
*********     Round 13: Early Stop Triggered at epoch 1548.    *********
Change in noise variance: 0.0000
Change in x0: 0.0643
*********             Velocity Refinement Round 14             *********
*********     Round 14: Early Stop Triggered at epoch 1557.    *********
Change in noise variance: 0.0000
Change in x0: 0.0579
*********             Velocity Refinement Round 15             *********
Stage 2: Early Stop Triggered at round 14.
*********              Finished. Total Time =   0 h :  2 m :  4 s             *********
Final: Train ELBO = -2.364,	Test ELBO = -59.837
Run 24, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_22.zarr.
Estimating ODE parameters...
Detected 393 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.66, 0.7192424805256069), (0.34, 0.29799031256004654)
KS-test result: [0. 1. 1.]
Initial induction: 333, repression: 89/422
Learning Rate based on Data Sparsity: 0.0004
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 989.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.019
Average Set Size: 19
*********     Round 1: Early Stop Triggered at epoch 1308.    *********
Change in noise variance: 0.0429
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1367.    *********
Change in noise variance: 0.0066
Change in x0: 0.2664
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1393.    *********
Change in noise variance: 0.0024
Change in x0: 0.1964
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1497.    *********
Change in noise variance: 0.0011
Change in x0: 0.1703
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1589.    *********
Change in noise variance: 0.0008
Change in x0: 0.1515
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1655.    *********
Change in noise variance: 0.0000
Change in x0: 0.1359
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1699.    *********
Change in noise variance: 0.0000
Change in x0: 0.1163
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1813.    *********
Change in noise variance: 0.0000
Change in x0: 0.1072
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  2 m : 21 s             *********
Final: Train ELBO = 616.538,	Test ELBO = 526.494
Run 25, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_25.zarr.
Estimating ODE parameters...
Detected 453 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.52, 0.28603679504748397), (0.48, 0.7673497264953757)
(0.37, 0.33761410289326726), (0.63, 0.8504461451142085)
KS-test result: [0. 1. 0.]
Initial induction: 369, repression: 209/578
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.011
Average Set Size: 46
Change in noise variance: 0.2165
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1581.    *********
Change in noise variance: 0.0129
Change in x0: 0.9887
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1718.    *********
Change in noise variance: 0.0076
Change in x0: 0.7500
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1729.    *********
Change in noise variance: 0.0109
Change in x0: 0.6287
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1766.    *********
Change in noise variance: 0.0053
Change in x0: 0.5312
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1773.    *********
Change in noise variance: 0.0021
Change in x0: 0.4532
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1797.    *********
Change in noise variance: 0.0049
Change in x0: 0.3519
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1828.    *********
Change in noise variance: 0.0057
Change in x0: 0.2352
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1854.    *********
Change in noise variance: 0.0038
Change in x0: 0.1470
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1896.    *********
Change in noise variance: 0.0015
Change in x0: 0.1019
*********             Velocity Refinement Round 11             *********
*********     Round 11: Early Stop Triggered at epoch 1907.    *********
Change in noise variance: 0.0004
Change in x0: 0.0837
*********             Velocity Refinement Round 12             *********
*********     Round 12: Early Stop Triggered at epoch 1946.    *********
Change in noise variance: 0.0000
Change in x0: 0.0917
*********             Velocity Refinement Round 13             *********
Stage 2: Early Stop Triggered at round 12.
*********              Finished. Total Time =   0 h :  2 m : 36 s             *********
Final: Train ELBO = -1092.304,	Test ELBO = -1252.312
Run 26, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_20.zarr.
Estimating ODE parameters...
Detected 280 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 2 to repressive
Initial induction: 201, repression: 88/289
Learning Rate based on Data Sparsity: 0.0004
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.118
Average Set Size: 19
*********     Round 1: Early Stop Triggered at epoch 1452.    *********
Change in noise variance: 0.0595
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1629.    *********
Change in noise variance: 0.0121
Change in x0: 0.2074
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1705.    *********
Change in noise variance: 0.0010
Change in x0: 0.1123
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1817.    *********
Change in noise variance: 0.0002
Change in x0: 0.0804
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1986.    *********
Change in noise variance: 0.0000
Change in x0: 0.0608
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 2155.    *********
Change in noise variance: 0.0000
Change in x0: 0.0600
*********             Velocity Refinement Round 7             *********
Stage 2: Early Stop Triggered at round 6.
*********              Finished. Total Time =   0 h :  2 m : 44 s             *********
Final: Train ELBO = 523.419,	Test ELBO = 410.966
Run 27, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_7.zarr.
Estimating ODE parameters...
Detected 347 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.35, 0.3338688963765141), (0.65, 0.8501683610682383)
(0.43, 0.26033194504377993), (0.57, 0.7905961327414116)
KS-test result: [0. 1. 0.]
Initial induction: 340, repression: 141/481
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.033
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 1416.    *********
Change in noise variance: 0.0589
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1478.    *********
Change in noise variance: 0.0218
Change in x0: 0.4051
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1590.    *********
Change in noise variance: 0.0033
Change in x0: 0.3137
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1666.    *********
Change in noise variance: 0.0026
Change in x0: 0.2701
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1695.    *********
Change in noise variance: 0.0013
Change in x0: 0.2180
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1762.    *********
Change in noise variance: 0.0009
Change in x0: 0.1583
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1769.    *********
Change in noise variance: 0.0000
Change in x0: 0.1418
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 1776.    *********
Change in noise variance: 0.0000
Change in x0: 0.1210
*********             Velocity Refinement Round 9             *********
*********     Round 9: Early Stop Triggered at epoch 1828.    *********
Change in noise variance: 0.0000
Change in x0: 0.1092
*********             Velocity Refinement Round 10             *********
*********     Round 10: Early Stop Triggered at epoch 1902.    *********
Change in noise variance: 0.0000
Change in x0: 0.1064
*********             Velocity Refinement Round 11             *********
Stage 2: Early Stop Triggered at round 10.
*********              Finished. Total Time =   0 h :  2 m : 29 s             *********
Final: Train ELBO = -124.616,	Test ELBO = -153.157
Run 28, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_3.zarr.
Estimating ODE parameters...
Detected 148 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
(0.41, 0.7019526186807664), (0.59, 0.16143693643502346)
KS-test result: [1. 0. 1.]
Initial induction: 137, repression: 71/208
Learning Rate based on Data Sparsity: 0.0000
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 9.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.030
Average Set Size: 20
*********     Round 1: Early Stop Triggered at epoch 18.    *********
Change in noise variance: 0.2526
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 25.    *********
Change in noise variance: 0.0175
Change in x0: 0.5068
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 34.    *********
Change in noise variance: 0.0136
Change in x0: 0.3108
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 43.    *********
Change in noise variance: 0.0037
Change in x0: 0.1939
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 52.    *********
Change in noise variance: 0.0009
Change in x0: 0.1428
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 59.    *********
Change in noise variance: 0.0000
Change in x0: 0.1115
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 73.    *********
Change in noise variance: 0.0000
Change in x0: 0.1003
*********             Velocity Refinement Round 8             *********
*********     Round 8: Early Stop Triggered at epoch 82.    *********
Change in noise variance: 0.0000
Change in x0: 0.0981
*********             Velocity Refinement Round 9             *********
Stage 2: Early Stop Triggered at round 8.
*********              Finished. Total Time =   0 h :  0 m :  7 s             *********
Final: Train ELBO = -37723.707,	Test ELBO = -37839.289
Run 29, file /ictstr01/groups/ml01/workspace/yifan.chen/regvelo_reproducibility/data/dyngen/complexity_1/processed/simulation_26.zarr.
Estimating ODE parameters...
Detected 470 velocity genes.
Estimating the variance...
Initialization using the steady-state and dynamical models.
Reinitialize the regular ODE parameters based on estimated global latent time.
3 clusters detected based on gene co-expression.
KS-test result: [1. 1. 1.]
Assign cluster 1 to repressive
Initial induction: 324, repression: 170/494
Learning Rate based on Data Sparsity: 0.0003
--------------------------- Train a VeloVAE ---------------------------
*********        Creating Training/Validation Datasets        *********
*********                      Finished.                      *********
*********                 Creating optimizers                 *********
*********                      Finished.                      *********
*********                    Start training                   *********
*********                      Stage  1                       *********
Total Number of Iterations Per Epoch: 6, test iteration: 10
*********       Stage 1: Early Stop Triggered at epoch 824.       *********
*********                      Stage  2                       *********
*********             Velocity Refinement Round 1             *********
Percentage of Invalid Sets: 0.118
Average Set Size: 19
*********     Round 1: Early Stop Triggered at epoch 1041.    *********
Change in noise variance: 0.0273
*********             Velocity Refinement Round 2             *********
*********     Round 2: Early Stop Triggered at epoch 1113.    *********
Change in noise variance: 0.0124
Change in x0: 0.2851
*********             Velocity Refinement Round 3             *********
*********     Round 3: Early Stop Triggered at epoch 1132.    *********
Change in noise variance: 0.0018
Change in x0: 0.1825
*********             Velocity Refinement Round 4             *********
*********     Round 4: Early Stop Triggered at epoch 1156.    *********
Change in noise variance: 0.0004
Change in x0: 0.1316
*********             Velocity Refinement Round 5             *********
*********     Round 5: Early Stop Triggered at epoch 1182.    *********
Change in noise variance: 0.0000
Change in x0: 0.1173
*********             Velocity Refinement Round 6             *********
*********     Round 6: Early Stop Triggered at epoch 1204.    *********
Change in noise variance: 0.0000
Change in x0: 0.0974
*********             Velocity Refinement Round 7             *********
*********     Round 7: Early Stop Triggered at epoch 1228.    *********
Change in noise variance: 0.0000
Change in x0: 0.0896
*********             Velocity Refinement Round 8             *********
Stage 2: Early Stop Triggered at round 7.
*********              Finished. Total Time =   0 h :  1 m : 38 s             *********
Final: Train ELBO = 594.783,	Test ELBO = 521.406

Data saving#

if SAVE_DATA:
    pd.DataFrame({"velocity": velocity_correlation}).to_parquet(
        path=DATA_DIR / DATASET / COMPLEXITY / "results" / "velovae_fullvb_correlation.parquet"
    )